Turing-Hopf bifurcation of a diffusive predator-prey model with Beddington-DeAngelis functional response and variable harvesting

被引:0
作者
Xia, Qingyan [1 ]
Liang, Zhengyi [1 ]
Liu, Zhihua [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusive predator-prey model; Delay; Turing-Hopf bifurcation; Normal form; Variable harvesting; SPATIOTEMPORAL DYNAMICS; DIFFERENTIAL-EQUATIONS; NORMAL FORMS; SYSTEM; DELAY; STABILITY;
D O I
10.1007/s12190-025-02568-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the dynamics of a reaction-diffusion model with variable harvesting and Beddington-DeAngelis functional response. After analyzing the corresponding characteristic equation, we investigate the existence of both diffusion-driven Turing bifurcation and delay-induced Hopf bifurcation. Moreover, we obtain the normal form truncated to the third-order terms for the Turing-Hopf bifurcation on the center manifold and investigate the dynamical behaviors near the Turing-Hopf bifurcation point. Finally, numerical simulation is used to validate the conclusions of the theoretical analysis.
引用
收藏
页数:38
相关论文
共 43 条
[1]   Breathers and mixed oscillatory states near a Turing-Hopf instability in a two-component reaction-diffusion system [J].
Al Saadi, Fahad ;
Knobloch, Edgar ;
Meiners, Alexander ;
Uecker, Hannes .
PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
[2]  
Al-Momen S., 2022, IRAQI J SCI, V63, P259, DOI [10.24996/ijs.2022.63.1.27, DOI 10.24996/IJS.2022.63.1.27]
[3]   Dynamic patterns in herding predator-prey system: Analyzing the impact of inertial delays and harvesting [J].
Bhattacharya, Santanu ;
Ghorai, Santu ;
Bairagi, Nandadulal .
CHAOS, 2024, 34 (12)
[4]  
Chaudhary M., 2019, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal, V26, P113
[5]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[6]   Hopf bifurcation theorem for second-order semi-linear Gurtin-MacCamy equation [J].
Ducrot, Arnaud ;
Kang, Hao ;
Magal, Pierre .
JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (03)
[7]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :181-200
[9]   Bifurcation and stability analysis of a Leslie-Gower diffusion predator-prey model with prey refuge and Beddington-DeAngelis functional response [J].
Feng, Xiaozhou ;
Li, Kunyu ;
Li, Haixia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) :2954-2979
[10]  
Haque M.M., 2018, Int. J. Bifurc. Chaos, V28, P331