Surjective Isometries on Function Spaces with Derivatives

被引:0
作者
Cabrera-Padilla, M. G. [1 ]
Jimenez-Vargas, A. [1 ]
Miura, Takeshi [2 ]
Villegas-Vallecillos, Moises [3 ]
机构
[1] Univ Almeria, Dept Matemat, Almeria 04120, Spain
[2] Niigata Univ, Fac Sci, Dept Math, Niigata 9502181, Japan
[3] Univ Cadiz, Dept Matemat, Puerto Real 11510, Spain
关键词
Surjective isometry; function space; Choquet boundary; extreme point; LINEAR ISOMETRIES;
D O I
10.1007/s00009-025-02892-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} be a complex Banach space with a norm f=fX+d(f)Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| f\right\| =\left\| f\right\| _{X}+\left\| d(f)\right\| _{Y}$$\end{document} for f is an element of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in A$$\end{document}, where d is a complex linear map from A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} onto a Banach space B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, and <middle dot>K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| \cdot \right\| _{K}$$\end{document} represents the supremum norm on a compact Hausdorff space K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. In this paper, we characterize surjective isometries on (A,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(A,\left\| \cdot \right\| )$$\end{document}, which may be nonlinear. This unifies former results on surjective isometries between specific function spaces.
引用
收藏
页数:24
相关论文
共 14 条
[1]  
Banach S., 2009, THEORY LINEAR OPERAT
[2]  
Browder Andrew., 1969, INTRO FUNCTION ALGEB
[3]  
Fleming R.J., 2003, ISOMETRIES BANACH SP
[4]  
Hatori O., 2023, RIMS Kokyuroku Bessatsu, V93, P29
[5]  
Kawamura K, 2018, ACTA SCI MATH, V84, P239, DOI 10.14232/actasm-017-331-0
[6]  
Mazur Stanislaw., 1932, COMPTES RENDUS, V194, P946
[7]  
Miura T., 2017, Contemp. Math, V687, P181, DOI DOI 10.1090/CONM/687/13787
[8]  
Miura T., 2018, Nihonkai Math. J, V29, P53
[9]  
Miura T., 2020, Nihonkai Math. J, V31, P75
[10]   Surjective isometries on a Banach space of analytic functions with bounded derivatives [J].
Miura, Takeshi ;
Niwa, Norio .
ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (1-2) :109-145