Data Protection Regulation Compliant Dataset Generation for LiDAR-based People Detection Using Neural Networks

被引:1
作者
Haas, Lukas [1 ,4 ]
Zedelmeier, Johann [1 ]
Bindges, Florian [2 ]
Kuba, Matthias [3 ]
Zeh, Thomas [1 ]
Jakobi, Martin [4 ]
Koch, Alexander W. [4 ]
机构
[1] Kempten Univ Appl Sci, Inst Driver Assistance Syst & Connected Mobil, Kempten, Germany
[2] Blickfeld GmbH, Munich, Germany
[3] Kempten Univ Appl Sci, Fac Elect Engn, Kempten, Germany
[4] Tech Univ Munich, Inst Measurement Syst & Sensor Technol, Munich, Germany
来源
2024 CONFERENCE ON AI, SCIENCE, ENGINEERING, AND TECHNOLOGY, AIXSET | 2024年
关键词
LiDAR sensor; camera; deep learning; neural networks; point cloud; labeling; people detection;
D O I
10.1109/AIxSET62544.2024.00019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of LiDAR sensor technology for people detection offers a significant advantage in terms of data protection. In LiDAR point clouds, unlike camera images, people can be detected but not identified without further information. LiDAR sensors are, therefore, particularly suitable for detecting people in publicly accessible places and reacting accordingly to the number of people, for example, with on demand services at airports. Due to the anonymity of people in LiDAR point clouds, personal data is protected, and approval for implementing such a detection system is simpler than that of comparable camera systems. In this paper, we present a measurement setup that covers the configuration of the sensor setup, the creation of a dataset for training neural networks for object detection, and the object detection itself. The measurement setup generates an average of 2408 automatically labeled point clouds per sensor, per hour. The SECOND network trained with this dataset achieves average precision for the intersection over union of the 2D view with a threshold of 0.5 of 87.67 %, the PV-RCNN of 85.74 % and an average precision for the average orientation similarity with a threshold of 0.5 of 89.56 %, and for the PV-RCNN of 87.81 %.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 51 条
[1]   People Detection and Tracking Using LIDAR Sensors [J].
Alvarez-Aparicio, Claudia ;
Manuel Guerrero-Higueras, Angel ;
Javier Rodriguez-Lera, Francisco ;
Gines Clavero, Jonatan ;
Martin Rico, Francisco ;
Matellan, Vicente .
ROBOTICS, 2019, 8 (03)
[2]  
[Anonymous], 2016, VERORDNUNG (EU) 2016/679 DES EUROPA ISCHEN PARLA- MENTS UND DES RATES of April 27, 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EG (Datenschutz-Grundverordnung)
[3]  
[Anonymous], 2016, Art. 2 and 3 VERORDNUNG (EU) 2016/679 DES EUROPA ISCHEN PARLAMENTS UND DES RATES of April 27, 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EG (Datenschutz-Grundverordnung)
[4]  
Bayerisches Datenschutzgesetz (BayDSG), 2018, Bavarian Law and Ordinance Gazette No. 8/2018.
[5]  
Blickfeld GmbH, Datasheet
[6]  
Blickfeld GmbH, Qb2 ROS2 Driver
[7]  
Blickfeld GmbH, Technologie
[8]  
Boettiger Carl, 2015, ACM SIGOPS Operating Systems Review, V49, P71
[9]  
Bundesdatenschutzgesetz (BDSG), 2017, Federal Law Gazette Volume 2017 Part I No. 44,
[10]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628