Model-Driven Deep Learning Based Channel Estimation for Millimeter-Wave Massive Hybrid MIMO Systems

被引:4
作者
Ma, Xisuo [1 ,2 ]
Gao, Zhen [1 ,2 ]
Wu, Di [3 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100088, Peoples R China
[3] China Acad Informat & Commun Technol, Beijing 100191, Peoples R China
来源
2021 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC | 2021年
基金
美国国家科学基金会;
关键词
Deep learning; model-driven; millimeter-wave; massive MIMO; OFDM; channel estimation;
D O I
10.1109/ICCC52777.2021.9580308
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a model-driven deep learning (MDDL)-based channel estimation solution for wideband millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, where we consider the channels' sparsity in angle domain. To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains at the base station (RS), we propose to jointly train the phase shift network and the channel estimator as an auto-encoder. Specifically, by exploiting the channels' structured sparsity from an a priori model and learning the integrated trainable parameters from the data samples, the proposed multiple-measurement-vectors learned approximate message passing (MMV-LAMP) network with the devised redundant dictionary can jointly recover multiple subcarriers' channels with significantly enhanced performance. Numerical results show that the proposed MDDL-based channel estimation scheme outperforms the state-of-the-art approaches.
引用
收藏
页码:676 / 681
页数:6
相关论文
共 17 条
[1]   AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [J].
Borgerding, Mark ;
Schniter, Philip ;
Rangan, Sundeep .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) :4293-4308
[2]   COMPRESSIVE SENSING TECHNIQUES FOR NEXT-GENERATION WIRELESS COMMUNICATIONS [J].
Gao, Zhen ;
Dai, Linglong ;
Han, Shuangfeng ;
I, Chih-Lin ;
Wang, Zhaocheng ;
Hanzo, Lajos .
IEEE WIRELESS COMMUNICATIONS, 2018, 25 (03) :144-153
[3]   Model-Driven Deep Learning for Physical Layer Communications [J].
He, Hengtao ;
Jin, Shi ;
Wen, Chao-Kai ;
Gao, Feifei ;
Li, Geoffrey Ye ;
Xu, Zongben .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (05) :77-83
[4]   Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems [J].
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) :852-855
[5]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453
[6]   Compressive Sensing-Based Adaptive Active User Detection and Channel Estimation: Massive Access Meets Massive MIMO [J].
Ke, Malong ;
Gao, Zhen ;
Wu, Yongpeng ;
Gao, Xiqi ;
Schober, Robert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 :764-779
[7]  
Kingma D. P., 2015, 3 INT C LEARN REPR, P1
[8]   Terahertz Ultra-Massive MIMO-Based Aeronautical Communications in Space-Air-Ground Integrated Networks [J].
Liao, Anwen ;
Gao, Zhen ;
Wang, Dongming ;
Wang, Hua ;
Yin, Hao ;
Ng, Derrick Wing Kwan ;
Alouini, Mohamed-Slim .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (06) :1741-1767
[9]   Closed-Loop Sparse Channel Estimation for Wideband Millimeter-Wave Full-Dimensional MIMO Systems [J].
Liao, Anwen ;
Gao, Zhen ;
Wang, Hua ;
Chen, Sheng ;
Alouini, Mohamed-Slim ;
Yin, Hao .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (12) :8329-8345
[10]   Estimation of Broadband Multiuser Millimeter Wave Massive MIMO-OFDM Channels by Exploiting Their Sparse Structure [J].
Lin, Xincong ;
Wu, Sheng ;
Jiang, Chunxiao ;
Kuang, Linling ;
Yan, Jian ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (06) :3959-3973