Photonic quantum generative adversarial networks for classical data

被引:1
作者
Sedrakyan, Tigran [1 ,2 ]
Salavrakos, Alexia [1 ]
机构
[1] Quandela, 7 Rue Leonard de Vinci, F-91300 Massy, France
[2] Sorbonne Univ, CNRS, LIP6, F-75005 Paris, France
来源
OPTICA QUANTUM | 2024年 / 2卷 / 06期
关键词
D O I
10.1364/OPTICAQ.530346
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In generative learning, models are trained to produce new samples that follow the distribution of the target data. These models were historically difficult to train, until proposals such as generative adversarial networks (GANs) emerged, where a generative and a discriminative model compete against each other in a minimax game. Quantum versions of the algorithm have since been designed for the generation of both classical and quantum data. While most work so far has focused on qubit-based architectures, in this article we present a quantum GAN based on linear optical circuits and Fock-space encoding, which makes it compatible with near-term photonic quantum computing. We demonstrate that the model can learn to generate images by training the model end-to-end experimentally on a single-photon quantum processor. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 58 条
[1]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[2]   Quantum Technologies Need a Quantum Energy Initiative [J].
Auffeves, Alexia .
PRX QUANTUM, 2022, 3 (02)
[3]   Experimental kernel-based quantum machine learning in finite feature space [J].
Bartkiewicz, Karol ;
Gneiting, Clemens ;
Cernoch, Antonin ;
Jirakova, Katerina ;
Lemr, Karel ;
Nori, Franco .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Fusion-based quantum computation [J].
Bartolucci, Sara ;
Birchall, Patrick ;
Bombin, Hector ;
Cable, Hugo ;
Dawson, Chris ;
Gimeno-Segovia, Mercedes ;
Johnston, Eric ;
Kieling, Konrad ;
Nickerson, Naomi ;
Pant, Mihir ;
Pastawski, Fernando ;
Rudolph, Terry ;
Sparrow, Chris .
NATURE COMMUNICATIONS, 2023, 14 (01)
[5]  
Ber mot E., 2023, 2023 IEEE INT C QUAN
[6]   Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer [J].
Bourassa, J. Eli ;
Alexander, Rafael N. ;
Vasmer, Michael ;
Patil, Ashlesha ;
Tzitrin, Ilan ;
Matsuura, Takaya ;
Su, Daiqin ;
Baragiola, Ben Q. ;
Guha, Saikat ;
Dauphinais, Guillaume ;
Sabapathy, Krishna K. ;
Menicucci, Nicolas C. ;
Dhand, Ish .
QUANTUM, 2021, 5
[7]  
Bowles J., 2024, arXiv
[8]  
Brown T., 2020, P 34 C ADV NEUR INF, P1877, DOI DOI 10.48550/ARXIV.2005.14165
[9]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[10]   Towards a scalable discrete quantum generative adversarial neural network [J].
Chaudhary, Smit ;
Huembeli, Patrick ;
MacCormack, Ian ;
Patti, Taylor L. ;
Kossaifi, Jean ;
Galda, Alexey .
QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (03)