Accurate RGB-D Salient Object Detection via Collaborative Learning

被引:157
作者
Ji, Wei [1 ]
Li, Jingjing [1 ]
Zhang, Miao [1 ]
Piao, Yongri [1 ]
Lu, Huchuan [1 ,2 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
[2] Pengcheng Lab, Shenzhen, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT XVIII | 2020年 / 12363卷
基金
中国国家自然科学基金;
关键词
ATTENTION; NETWORK;
D O I
10.1007/978-3-030-58523-5_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Benefiting from the spatial cues embedded in depth images, recent progress on RGB-D saliency detection shows impressive ability on some challenge scenarios. However, there are still two limitations. One hand is that the pooling and upsampling operations in FCNs might cause blur object boundaries. On the other hand, using an additional depth-network to extract depth features might lead to high computation and storage cost. The reliance on depth inputs during testing also limits the practical applications of current RGB-D models. In this paper, we propose a novel collaborative learning framework where edge, depth and saliency are leveraged in a more efficient way, which solves those problems tactfully. The explicitly extracted edge information goes together with saliency to give more emphasis to the salient regions and object boundaries. Depth and saliency learning is innovatively integrated into the high-level feature learning process in a mutual-benefit manner. This strategy enables the network to be free of using extra depth networks and depth inputs to make inference. To this end, it makes our model more lightweight, faster and more versatile. Experiment results on seven benchmark datasets show its superior performance.
引用
收藏
页码:52 / 69
页数:18
相关论文
共 70 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[3]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[5]   Three-Stream Attention-Aware Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) :2825-2835
[6]   Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3051-3060
[7]   Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection [J].
Chen, Hao ;
Li, Youfu ;
Su, Dan .
PATTERN RECOGNITION, 2019, 86 :376-385
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416