ON MODAL PRESENTATION OF EXPLOSIVE AND PARACONSISTENT EQUILIBRIUM LOGIC

被引:0
作者
Odintsovo, S. P. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2025年 / 22卷 / 01期
基金
俄罗斯科学基金会;
关键词
logic programs; negation-as-failure; strong negation; equilibrium logic; deductive base; temporal logic; equilibrium mo-dal theory; SEMANTICS; MODELS;
D O I
10.33048/semi.2025.22.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Farifias del Cerro, Herzig and Su proved that the non-monotonic consequence relation determined by Answer Set Semantics (ASP) for logic programs with negation-as-failure can be embedded into a monotonic modal logic via a variation of Godel-Tarski Translation. This article generalizes the mentioned result to ASP for logic programs with two kinds of negation: negation-as-failure and strong negation and to PAS, the paraconsistent version of ASP admitting answer sets that are inconsistent w.r.t. the strong negation.
引用
收藏
页码:479 / 499
页数:21
相关论文
共 25 条
[1]  
Alcântara J, 2004, FRONT ARTIF INTEL AP, V110, P951
[2]  
[Anonymous], 1933, Ergebnisse einesmathematischen Kolloquiums, DOI DOI 10.1093/OSO/9780195147209.003.0066
[3]  
Belnap, 1977, MODERN USES MULTIPLE, P5, DOI [DOI 10.1007/978-94-010-1161-7_2, 10.1007/978-94-010-1161-72, DOI 10.1007/978-94-010-1161-72]
[4]  
Chagrov A, 1997, MODAL LOGIC
[5]   Capturing equilibrium models in modal logic [J].
del Cerro, Luis Farinas ;
Herzig, Andreas ;
Su, Ezgi Iraz .
JOURNAL OF APPLIED LOGIC, 2014, 12 (02) :192-207
[6]   INTUITIVE SEMANTICS FOR 1ST-DEGREE ENTAILMENTS AND COUPLED TREES [J].
DUNN, JM .
PHILOSOPHICAL STUDIES, 1976, 29 (03) :149-168
[7]  
Font J., 2016, Abstract algebraic logic: An introductory textbook
[8]  
Gelfond M., 1991, New Generation Computing, V9, P365, DOI 10.1007/BF03037169
[9]  
Gelfound M., 1988, Logic Programming: Proceedings of the Fifth International Conference and Symposium, P1070
[10]  
Lifschitz V., 2001, ACM Transactions on Computational Logic, V2, P526, DOI [10.1145/383779 .383783, DOI 10.1145/383779.383783]