Long Time Regularity for 3D Gravity Waves with Vorticity

被引:0
作者
Ginsberg, Daniel [1 ]
Pusateri, Fabio [2 ]
机构
[1] CUNY Brooklyn Coll, Dept Math, 2900 Bedford Ave, Brooklyn, NY 11210 USA
[2] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Euler equations; Water waves; Vorticity; INCOMPRESSIBLE EULER EQUATIONS; WATER-WAVES; WELL-POSEDNESS; FREE-SURFACE; GLOBAL-SOLUTIONS; SOBOLEV SPACES; EXISTENCE; WELLPOSEDNESS; REGIME; MOTION;
D O I
10.1007/s40818-025-00206-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the full free boundary Euler equations in 3d with an initial small velocity of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon_0)$$\end{document}, in a moving domain which is initially an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon_0)$$\end{document} perturbation of a flat interface. We assume that the initial vorticity is of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon_1)$$\end{document} and prove a regularity result up to times of the order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon_1<^>{-1+}$$\end{document}, independent of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon _0}$$\end{document}. A key part of our proof is a normal form type argument for the vorticity equation; this needs to be performed in the full three dimensional domain and is necessary to effectively remove the irrotational components from the quadratic stretching terms and uniformly control the vorticity. Another difficulty is to obtain sharp decay for the irrotational component of the velocity and the interface; to do this we perform a dispersive analysis on the boundary equations, which are forced by a singular contribution from the rotational component of the velocity. As a corollary of our result, when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon _1}$$\end{document} goes to zero we recover the celebrated global regularity results of Wu (Invent. Math. 2012) and Germain, Masmoudi and Shatah (Ann. of Math. 2013) in the irrotational case.
引用
收藏
页数:119
相关论文
共 52 条
[1]   On the Cauchy problem for gravity water waves [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
INVENTIONES MATHEMATICAE, 2014, 198 (01) :71-163
[2]  
Alazard T, 2015, ANN SCI ECOLE NORM S, V48, P1149
[3]  
Alazard T, 2015, ASTERISQUE, P1
[4]   Pure gravity traveling quasi-periodic water waves with constant vorticity [J].
Berti, Massimiliano ;
Franzoi, Luca ;
Maspero, Alberto .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (02) :990-1064
[5]  
Berti M, 2022, Arxiv, DOI arXiv:2212.12255
[6]   Birkhoff Normal Form and Long Time Existence for Periodic Gravity Water Waves [J].
Berti, Massimiliano ;
Feola, Roberto ;
Pusateri, Fabio .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (07) :1416-1494
[7]   Well-Posedness and Shallow-Water Stability for a New Hamiltonian Formulation of the Water Waves Equations with Vorticity [J].
Castro, Angel ;
Lannes, David .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (04) :1169-1270
[8]   Strichartz Estimates for the Water-Wave Problem with Surface Tension [J].
Christianson, Hans ;
Hur, Vera Mikyoung ;
Staffilani, Gigliola .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (12) :2195-2252
[9]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
[10]  
2-H