Machine learning and the nomogram as the accurate tools for predicting postoperative malnutrition risk in esophageal cancer patients

被引:0
作者
Lin, Zhenmeng [1 ,2 ,3 ]
He, Hao [1 ,2 ]
Yan, Mingfang [3 ]
Chen, Xiamei [2 ,4 ]
Chen, Hanshen [5 ]
Ke, Jianfang [1 ,2 ]
机构
[1] Fujian Med Univ, Dept Thorac Oncol Surg, Clin Oncol Sch, Fuzhou, Peoples R China
[2] Fujian Canc Hosp, Fuzhou, Fujian, Peoples R China
[3] Fujian Med Univ, Fujian Canc Hosp, Dept Anesthesiol Surg, Clin Oncol Sch, Fuzhou, Peoples R China
[4] Fujian Med Univ, Dept Operat, Clin Oncol Sch, Fuzhou, Fujian, Peoples R China
[5] Fujian Med Univ, Dept Thorac Oncol Surg, Affiliated Hosp 1, Fuzhou, Peoples R China
关键词
esophageal cancer; postoperative malnutrition; machine learning; nomogram; surgery; GLIM CRITERIA; SURVIVAL; NUTRITION; OUTCOMES; IMPACT;
D O I
10.3389/fnut.2025.1606470
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Postoperative malnutrition is a prevalent complication following esophageal cancer surgery, significantly impairing clinical recovery and longterm prognosis. This study aimed to develop and validate predictive models using machine learning algorithms and a nomogram to estimate the risk of malnutrition at 1 month after esophagectomy. Methods: A total of 1,693 patients who underwent curative esophageal cancer surgery were analyzed, with 1,251 patients allocated to the development cohort and 442 to the validation cohort. Feature selection was performed via the least absolute shrinkage and selection operator (LASSO) algorithm. Eight machine learning models were constructed and evaluated, alongside a nomogram developed through multivariable logistic regression. Results: The incidence of postoperative malnutrition was 45.4% (568/1,251) in the development cohort and 50.7% (224/442) in the validation cohort. Among machine learning models, the Random Forest (RF) model demonstrated optimal performance, achieving area under the receiver operating characteristic curve (AUC) values of 0.820 (95% CI: 0.796-0.845) and 0.805 (95% CI: 0.771-0.839) in the development and validation cohorts, respectively. The nomogram incorporated five clinically interpretable predictors: female gender, advanced age, low preoperative body mass index (BMI), neoadjuvant therapy history, and preoperative sarcopenia. It showed comparable discriminative ability, with AUCs of 0.801 (95% CI: 0.775-0.826) and 0.795 (95% CI: 0.764-0.828) in the respective cohorts (p > 0.05 vs. RF). Calibration curves revealed strong agreement between predicted and observed outcomes, while decision curve analysis (DCA) confirmed substantial clinical utility across risk thresholds. Conclusion: Both machine learning and the nomogram provide accurate tools for predicting postoperative malnutrition risk in esophageal cancer patients. While RF showed marginally higher predictive performance, the nomogram offers superior clinical interpretability, making it a practical option for individualized risk stratification.
引用
收藏
页数:13
相关论文
共 72 条
[1]   Impact of weight loss on cancer patients' quality of life at the beginning of the chemotherapy [J].
Alvaro Sanz, Elena ;
Abiles, Jimena ;
Garrido Siles, Margarita ;
Perez Ruiz, Elisabeth ;
Alcaide Garcia, Julia ;
Rueda Dominguez, Antonio .
SUPPORTIVE CARE IN CANCER, 2021, 29 (02) :627-634
[2]   Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition [J].
Barazzoni, Rocco ;
Jensen, Gordon L. ;
Correia, Maria Isabel T. D. ;
Gonzalez, Maria Cristina ;
Higashiguchi, Takashi ;
Shi, Han Ping ;
Bischoff, Stephan C. ;
Boirie, Yves ;
Carrasco, Fernando ;
Cruz-Jentoft, Alfonso ;
Fuchs-Tarlovsky, Vanessa ;
Fukushima, Ryoji ;
Heymsfield, Steve ;
Mourtzakis, Marina ;
Muscaritoli, Maurizio ;
Norman, Kristina ;
Nyulasi, Ibolya ;
Pisprasert, Veeradej ;
Prado, Carla ;
de van der Schuren, Marian ;
Yoshida, Sadao ;
Yu, Yanchun ;
Cederholm, Tommy ;
Compher, Charlene .
CLINICAL NUTRITION, 2022, 41 (06) :1425-1433
[3]   Psychosocial factors, health behaviors and risk of cancer incidence: Testing interaction and effect modification in an individual participant data meta-analysis [J].
Basten, Maartje ;
Pan, Kuan-Yu ;
van Tuijl, Lonneke A. ;
de Graeff, Alexander ;
Dekker, Joost ;
Hoogendoorn, Adriaan W. ;
Lamers, Femke ;
Ranchor, Adelita V. ;
Vermeulen, Roel ;
Portengen, Luetzen ;
Voogd, Adri C. ;
Abell, Jessica ;
Awadalla, Philip ;
Beekman, Aartjan T. F. ;
Bjerkeset, Ottar ;
Boyd, Andy ;
Cui, Yunsong ;
Frank, Philipp ;
Galenkamp, Henrike ;
Garssen, Bert ;
Hellingman, Sean ;
Huisman, Martijn ;
Huss, Anke ;
Keats, Melanie R. ;
Kok, Almar A. L. ;
Krokstad, Steinar ;
van Leeuwen, Flora E. ;
Luik, Annemarie I. ;
Noisel, Nolwenn ;
Payette, Yves ;
Penninx, Brenda W. J. H. ;
Rissanen, Ina ;
Roest, Annelieke M. ;
Rosmalen, Judith G. M. ;
Ruiter, Rikje ;
Schoevers, Robert A. ;
Soave, David ;
Spaan, Mandy ;
Steptoe, Andrew ;
Stronks, Karien ;
Sund, Erik R. ;
Sweeney, Ellen ;
Twait, Emma L. ;
Teyhan, Alison ;
Verschuren, W. M. Monique ;
van Der Willik, Kimberly D. ;
Geerlings, Mirjam I. .
INTERNATIONAL JOURNAL OF CANCER, 2024, 154 (10) :1745-1759
[4]   Intersectionality and cancer survivorship: Sexual orientation and racial/ethnic differences in physical and mental health outcomes among female and male cancer survivors [J].
Boehmer, Ulrike ;
Jesdale, Bill M. ;
Streed, Carl G., Jr. ;
Agenor, Madina .
CANCER, 2022, 128 (02) :284-291
[5]   Sarcopenia as a predictor of nutritional status and comorbidities in hospitalized patients with cancer: A cross-sectional study [J].
Borges, Thais C. ;
Gomes, Tatyanne L. N. ;
Pimentel, Gustavo D. .
NUTRITION, 2020, 73
[6]   Physical and Mental Health Factors Associated with Poor Nutrition in Elderly Cancer Survivors: Insights from a Nationwide Survey [J].
Byun, Mikyong ;
Kim, Eunjung ;
Kim, Jieun .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (17)
[7]   Nutritional assessment and risk factors associated to malnutrition in patients with esophageal cancer [J].
Cao, Jingjing ;
Xu, Hongxia ;
Li, Wei ;
Guo, Zengqing ;
Lin, Yuan ;
Shi, Yingying ;
Hu, Wen ;
Ba, Yi ;
Li, Suyi ;
Li, Zengning ;
Wang, Kunhua ;
Wu, Jing ;
He, Ying ;
Yang, Jiajun ;
Xie, Conghua ;
Zhou, Fuxiang ;
Song, Xinxia ;
Chen, Gongyan ;
Ma, Wenjun ;
Luo, Suxia ;
Chen, Zihua ;
Cong, Minghua ;
Ma, Hu ;
Zhou, Chunling ;
Wang, Wei ;
Luo, Qi ;
Shi, Yongmei ;
Qi, Yumei ;
Jiang, Haiping ;
Guan, Wenxian ;
Chen, Junqiang ;
Chen, Jiaxin ;
Fang, Yu ;
Zhou, Lan ;
Feng, Yongdong ;
Tan, Rongshao ;
Ou, Junwen ;
Zhao, Qingchuan ;
Wu, Jianxiong ;
Lin, Xin ;
Yang, Liuqing ;
Fu, Zhenming ;
Wang, Chang ;
Deng, Li ;
Li, Tao ;
Song, Chunhua ;
Shi, Hanping .
CURRENT PROBLEMS IN CANCER, 2021, 45 (01)
[8]   Diagnostic criteria for malnutrition - An ESPEN Consensus Statement [J].
Cederholm, T. ;
Bosaeus, I. ;
Barazzoni, R. ;
Bauer, J. ;
Van Gossum, A. ;
Klek, S. ;
Muscaritoli, M. ;
Nyulasi, I. ;
Ockenga, J. ;
Schneider, S. M. ;
de van der Schueren, M. A. E. ;
Singer, P. .
CLINICAL NUTRITION, 2015, 34 (03) :335-340
[9]   Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment [J].
Chen, Liang-Kung ;
Woo, Jean ;
Assantachai, Prasert ;
Auyeung, Tung-Wai ;
Chou, Ming-Yueh ;
Iijima, Katsuya ;
Jang, Hak Chul ;
Kang, Lin ;
Kim, Miji ;
Kim, Sunyoung ;
Kojima, Taro ;
Kuzuya, Masafumi ;
Lee, Jenny S. W. ;
Lee, Sang Yoon ;
Lee, Wei-Ju ;
Lee, Yunhwan ;
Liang, Chih-Kuang ;
Lim, Jae-Young ;
Lim, Wee Shiong ;
Peng, Li-Ning ;
Sugimoto, Ken ;
Tanaka, Tomoki ;
Won, Chang Won ;
Yamada, Minoru ;
Zhang, Teimei ;
Akishita, Masahiro ;
Arai, Hidenori .
JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2020, 21 (03) :300-+
[10]   Impact of weight loss on treatment interruption and unplanned hospital admission in head and neck cancer patients undergoing curative (chemo)-radiotherapy in Hong Kong [J].
Choi, Ying-Chu ;
Chan, Po-Chung ;
Cheung, Ka-Wai Alice ;
Huang, Jia-Jie ;
Wong, Kwok-Leung Aray ;
Doescher, Johannes ;
Lam, Tai-Chung .
SUPPORTIVE CARE IN CANCER, 2023, 31 (08)