Towards Part-Aware Monocular 3D Human Pose Estimation: An Architecture Search Approach

被引:18
作者
Chen, Zerui [1 ,3 ]
Huang, Yan [1 ]
Yu, Hongyuan [1 ,3 ]
Xue, Bin [3 ]
Han, Ke [1 ]
Guo, Yiru [5 ]
Wang, Liang [1 ,2 ,4 ]
机构
[1] CASIA, Ctr Res Intelligent Percept & Comp, NLPR, Beijing, Peoples R China
[2] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Chinese Acad Sci, Artificial Intelligence Res CAS AIR, Beijing, Peoples R China
[5] Beihang Univ, Sch Astronaut, Beijing, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT III | 2020年 / 12348卷
基金
中国国家自然科学基金;
关键词
3D pose estimation; Body parts; Neural architecture search;
D O I
10.1007/978-3-030-58580-8_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Even though most existing monocular 3D pose estimation approaches achieve very competitive results, they ignore the heterogeneity among human body parts by estimating them with the same network architecture. To accurately estimate 3D poses of different body parts, we attempt to build a part-aware 3D pose estimator by searching a set of network architectures. Consequently, our model automatically learns to select a suitable architecture to estimate each body part. Compared to models built on the commonly used ResNet-50 backbone, it reduces 62% parameters and achieves better performance. With roughly the same computational complexity as previous models, our approach achieves state-of-the-art results on both the single-person and multi-person 3D pose estimation benchmarks.
引用
收藏
页码:715 / 732
页数:18
相关论文
共 65 条
[1]   Tex2Shape: Detailed Full Human Body Geometry From a Single Image [J].
Alldieck, Thiemo ;
Pons-Moll, Gerard ;
Theobalt, Christian ;
Magnor, Marcus .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2293-2303
[2]   2D Human Pose Estimation: New Benchmark and State of the Art Analysis [J].
Andriluka, Mykhaylo ;
Pishchulin, Leonid ;
Gehler, Peter ;
Schiele, Bernt .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3686-3693
[3]  
[Anonymous], 2016, LNCS, V9915, P156, DOI [10.1007/978-3-319-49409-8, DOI 10.1007/978-3-319-49409-8]
[4]   Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image [J].
Bogo, Federica ;
Kanazawa, Angjoo ;
Lassner, Christoph ;
Gehler, Peter ;
Romero, Javier ;
Black, Michael J. .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :561-578
[5]  
Cai H., 2019, INT C LEARN REPR ICL
[6]   Exploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks [J].
Cai, Yujun ;
Ge, Liuhao ;
Liu, Jun ;
Cai, Jianfei ;
Cham, Tat-Jen ;
Yuan, Junsong ;
Thalmann, Nadia Magnenat .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2272-2281
[7]   3D Human Pose Estimation=2D Pose Estimation plus Matching [J].
Chen, Ching-Hang ;
Ramanan, Deva .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5759-5767
[8]  
Chen LC, 2018, ADV NEUR IN, V31
[9]  
Chen YC, 2019, ADV NEUR IN, V32
[10]  
Chen Z., 2019, BMVC