Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation

被引:176
作者
Zheng, Yangtao [1 ,2 ,3 ]
Huang, Di [1 ,2 ,3 ]
Liu, Songtao [1 ,2 ,3 ]
Wang, Yunhong [1 ,2 ,3 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.01378
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have witnessed great progress in deep learning based object detection. However, due to the domain shift problem, applying off-the-shelf detectors to an unseen domain leads to significant performance drop. To address such an issue, this paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection. At the coarse-grained stage, different from the rough image-level or instance-level feature alignment used in the literature, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions via multi-layer adversarial learning in the common feature space. At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains. Thanks to this coarse-to-fine feature adaptation, domain knowledge in foreground regions can be effectively transferred. Extensive experiments are carried out in various cross-domain detection scenarios. The results are state-of-the-art, which demonstrate the broad applicability and effectiveness of the proposed approach.
引用
收藏
页码:13763 / 13772
页数:10
相关论文
共 74 条
[1]  
[Anonymous], 2015, BMVC
[2]  
[Anonymous], IEEE I CONF COMP VIS
[3]   A theory of learning from different domains [J].
Ben-David, Shai ;
Blitzer, John ;
Crammer, Koby ;
Kulesza, Alex ;
Pereira, Fernando ;
Vaughan, Jennifer Wortman .
MACHINE LEARNING, 2010, 79 (1-2) :151-175
[4]  
BENDAVID S., 2007, NeurIPS, V20, P137
[5]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[6]   Exploring Object Relation in Mean Teacher for Cross-Domain Detection [J].
Cai, Qi ;
Pan, Yingwei ;
Ngo, Chong-Wah ;
Tian, Xinmei ;
Duan, Lingyu ;
Yao, Ting .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11449-11458
[7]   Progressive Feature Alignment for Unsupervised Domain Adaptation [J].
Chen, Chaoqi ;
Xie, Weiping ;
Huang, Wenbing ;
Rong, Yu ;
Ding, Xinghao ;
Huang, Yue ;
Xu, Tingyang ;
Huang, Junzhou .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :627-636
[8]   Domain Adaptation for Semantic Segmentation with Maximum Squares Loss [J].
Chen, Minghao ;
Xue, Hongyang ;
Cai, Deng .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2090-2099
[9]   Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning [J].
Chen, Yuhua ;
Pont-Tuset, Jordi ;
Montes, Alberto ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1189-1198
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223