Inverse Design of Manufacturable Infrared Metasurfaces Based on Multimodal Deep Learning Methods

被引:0
作者
Lin, Qunqing [1 ,2 ]
Li, Changsheng [1 ]
Chen, Jincheng [1 ]
Han, Yuge [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, MIIT Key Lab Thermal Control Elect Equipment, Nanjing 210094, Peoples R China
关键词
microstructure; deep learning; IR stealth; radiation cooling; inverse design; preparation; AMPLITUDE; OPTICS;
D O I
10.1021/acsami.5c07116
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural networks have emerged as an effective method for inverse design of metasurfaces. Despite significant progress in inverse design for photonic structures, the inherent complexity from high-dimensional parameter spaces and the nonlinear mapping between structural parameters and optical responses still pose major challenges for the on-demand design of complex photonic systems. In this paper, we propose a multimodal neural network framework for the inverse design of composite periodic microstructures. The proposed framework can generate design results for different modes based on the target spectrum, offering flexibility in meeting design requirements, which solves the inverse design problem efficiently, achieving speeds several orders of magnitude faster than traditional methods. Furthermore, given the critical importance of precise infrared emissivity control in stealth applications, we designed infrared stealth metasurfaces capable of radiative heat dissipation through nonatmospheric windows using the well-trained network. Subsequently, the sample was fabricated for experimental validation. The results demonstrate that, while preserving the low emissivity in the atmospheric window, the average IR emissivity of our prepared samples achieves 0.674 in the 5-8 mu m nonatmospheric window. This methodology achieves radiative heat dissipation that is compatible with infrared stealth. This paper gives a novel notion for the inverse design of complicated photonic devices, which has a broad application value.
引用
收藏
页码:40951 / 40963
页数:13
相关论文
共 42 条
[1]   Machine Learning in Interpolation and Extrapolation for Nanophotonic Inverse Design [J].
Acharige, Didulani ;
Johlin, Eric .
ACS OMEGA, 2022, 7 (37) :33537-33547
[2]   Multifunctional Metasurface Design with a Generative Adversarial Network [J].
An, Sensong ;
Zheng, Bowen ;
Tang, Hong ;
Shalaginov, Mikhail Y. ;
Zhou, Li ;
Li, Hang ;
Kang, Myungkoo ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Fowler, Clayton ;
Zhang, Hualiang .
ADVANCED OPTICAL MATERIALS, 2021, 9 (05)
[3]   Deep learning modeling approach for metasurfaces with high degrees of freedom [J].
An, Sensong ;
Zheng, Bowen ;
Shalaginov, Mikhail Y. ;
Tang, Hong ;
Li, Hang ;
Zhou, Li ;
Ding, Jun ;
Agarwal, Anuradha Murthy ;
Rivero-Baleine, Clara ;
Kang, Myungkoo ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Fowler, Clayton ;
Zhang, Hualiang .
OPTICS EXPRESS, 2020, 28 (21) :31932-31942
[4]   MEMS-tunable dielectric metasurface lens [J].
Arbabi, Ehsan ;
Arbabi, Amir ;
Kamali, Seyedeh Mahsa ;
Horie, Yu ;
Faraji-Dana, MohammadSadegh ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2018, 9
[5]   Teaching optics to a machine learning network [J].
Blanchard-Dionne, Andre-Pierre ;
Martin, Olivier J. F. .
OPTICS LETTERS, 2020, 45 (10) :2922-2925
[6]   Photonic Emulator for Inverse Design [J].
Cheng, Junwei ;
Zhang, Wenkai ;
Gu, Wentao ;
Zhou, Hailong ;
Dong, Jianji ;
Zhang, Xinliang .
ACS PHOTONICS, 2022, 10 (07) :2173-2181
[7]   All-Electrospun Piezoelectric Energy Harvesting for Leadless Pacemakers [J].
Closson, Andrew ;
Xu, Zhe ;
Kubiak, Daniella ;
Jin, Congran ;
Gruslova, Aleksandra ;
Nolen, Drew ;
Feldman, Marc ;
Zhang, John X. J. .
ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (11) :6236-6245
[8]   Roadmap on electromagnetic metamaterials and metasurfaces [J].
Cui, Tie Jun ;
Zhang, Shuang ;
Alu, Andrea ;
Wegener, Martin ;
Pendry, Sir John ;
Luo, Jie ;
Lai, Yun ;
Wang, Zuojia ;
Lin, Xiao ;
Chen, Hongsheng ;
Chen, Ping ;
Wu, Rui-Xin ;
Yin, Yuhang ;
Zhao, Pengfei ;
Chen, Huanyang ;
Li, Yue ;
Zhou, Ziheng ;
Engheta, Nader ;
Asadchy, Viktar ;
Simovski, Constantin ;
Tretyakov, Sergei ;
Yang, Biao ;
Campbell, Sawyer D. ;
Hao, Yang ;
Werner, Douglas H. ;
Sun, Shulin ;
Zhou, Lei ;
Xu, Su ;
Sun, Hong-Bo ;
Zhou, Zhou ;
Li, Zile ;
Zheng, Guoxing ;
Chen, Xianzhong ;
Li, Tao ;
Zhu, Shining ;
Zhou, Junxiao ;
Zhao, Junxiang ;
Liu, Zhaowei ;
Zhang, Yuchao ;
Zhang, Qiming ;
Gu, Min ;
Xiao, Shumin ;
Liu, Yongmin ;
Zhang, Xianzhe ;
Tang, Yutao ;
Li, Guixin ;
Zentgraf, Thomas ;
Koshelev, Kirill ;
Kivshar, Yuri ;
Li, Xin .
JOURNAL OF PHYSICS-PHOTONICS, 2024, 6 (03)
[9]   Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials [J].
Das Mahapatra, Susmriti ;
Mohapatra, Preetam Chandan ;
Aria, Adrianus Indrat ;
Christie, Graham ;
Mishra, Yogendra Kumar ;
Hofmann, Stephan ;
Thakur, Vijay Kumar .
ADVANCED SCIENCE, 2021, 8 (17)
[10]   Super-Resolution Imaging by Dielectric Superlenses: TiO2 Metamaterial Superlens versus BaTiO3 Superlens [J].
Dhama, Rakesh ;
Yan, Bing ;
Palego, Cristiano ;
Wang, Zengbo .
PHOTONICS, 2021, 8 (06)