An efficient and optimal numerical approach for solving a time-fractional fourth-order reaction-diffusion model with a distributed-order operator on complex domains

被引:0
作者
Qiang, Xiaoli [1 ]
Kosari, Saeed [2 ,3 ]
Derakhshan, MohammadHossein [4 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Inst Computat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangzhou Univ, Huangpu Res Sch, Guangzhou, Peoples R China
[4] Apadana Inst Higher Educ, Dept Ind Engn, Shiraz, Iran
基金
中国国家自然科学基金;
关键词
DISCONTINUOUS GALERKIN METHOD; EQUATION;
D O I
10.1007/s40065-025-00526-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an efficient numerical approach for solving the time-fractional fourth-order reaction-diffusion model involving a distributed-order operator. To discretize the fractional Caputo operator in time, quadratic and linear interpolation approximations are applied. For spatial discretization of the derivative operator, a direct meshless local Petrov-Galerkin scheme is used on the computational domain, which includes complex shapes. Stability and convergence analyses of the proposed numerical approach are presented and discussed. To evaluate the efficiency and performance of the method, several numerical examples are provided. Charts and tables are included to better illustrate the accuracy of the proposed method.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Direct meshless local Petrov-Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (03) :876-888
[2]   An Efficient Numerical Scheme to Approach the Time Fractional Black-Scholes Model Using Orthogonal Gegenbauer Polynomials [J].
Aghdam, Y. Esmaeelzade ;
Mesgarani, H. ;
Amin, A. ;
Gomez-Aguilar, J. F. .
COMPUTATIONAL ECONOMICS, 2024, 64 (01) :211-224
[3]   High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis [J].
Aghdam, Y. Esmaeelzade ;
Mesgarani, H. ;
Moremedi, G. M. ;
Khoshkhahtinat, M. .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) :217-225
[4]   A computational approach for the space-time fractional advection-diffusion equation arising in contaminant transport through porous media [J].
Aghdam, Y. Esmaeelzade ;
Mesgrani, H. ;
Javidi, M. ;
Nikan, O. .
ENGINEERING WITH COMPUTERS, 2021, 37 (04) :3615-3627
[5]   Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration [J].
Ansari, Alireza ;
Derakhshan, Mohammad Hossein ;
Askari, Hassan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113
[6]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[7]   Numerical study of the variable-order time-fractional mobile/immobile advection-diffusion equation using direct meshless local Petrov-Galerkin methods [J].
Bahmani, Erfan ;
Shokri, Ali .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 135 :111-123
[8]   Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :264-279
[9]   Stability analysis study for the time-fractional Galilei invariant advection-diffusion model of distributive order using an efficient hybrid approach [J].
Cai, Ruiqi ;
Kosari, Saeed ;
Shafi, Jana ;
Derakhshan, Mohammad Hossein .
PHYSICA SCRIPTA, 2024, 99 (12)
[10]  
Caputo M., 1969, Elasticita e dissipazione