Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations

被引:6
作者
Durasevic, Marko [1 ]
Jakobovic, Domagoj [1 ]
Martins, Marcella Scoczynski Ribeiro [2 ]
Picek, Stjepan [3 ]
Wagner, Markus [4 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
[2] Fed Univ Technol Parana UTFPR, Curitiba, Parana, Brazil
[3] Delft Univ Technol, Delft, Netherlands
[4] Univ Adelaide, Optimisat & Logist Grp, Adelaide, SA, Australia
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT II | 2020年 / 12270卷
基金
澳大利亚研究理事会;
关键词
Genetic programming; Dimensionally-Aware GP; Fitness landscape; Local optima network; SYMBOLIC REGRESSION;
D O I
10.1007/978-3-030-58115-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Genetic programming is an often-used technique for symbolic regression: finding symbolic expressions that match data from an unknown function. To make the symbolic regression more efficient, one can also use dimensionally-aware genetic programming that constrains the physical units of the equation. Nevertheless, there is no formal analysis of how much dimensionality awareness helps in the regression process. In this paper, we conduct a fitness landscape analysis of dimensionally-aware genetic programming search spaces on a subset of equations from Richard Feynman's well-known lectures. We define an initialisation procedure and an accompanying set of neighbourhood operators for conducting the local search within the physical unit constraints. Our experiments show that the added information about the variable dimensionality can efficiently guide the search algorithm. Still, further analysis of the differences between the dimensionally-aware and standard genetic programming landscapes is needed to help in the design of efficient evolutionary operators to be used in a dimensionally-aware regression.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 22 条
[1]   Local Optima Networks and the Performance of Iterated Local Search [J].
Daolio, Fabio ;
Verel, Sebastien ;
Ochoa, Gabriela ;
Tomassini, Marco .
PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, :369-376
[2]   A fitness landscape analysis of the Travelling Thief Problem [J].
El Yafrani, Mohamed ;
Martins, Marcella S. R. ;
El Krari, Mehdi ;
Wagner, Markus ;
Delgado, Myriam R. B. S. ;
Ahiod, Belaid ;
Luders, Ricardo .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :277-284
[3]  
Feynman RP., 2010, Feynman Lectures on Physics-New millennium Edition, V2
[4]  
Fitzsimmons J, 2018, 1 IEEE C ARTIFICIAL
[5]   Breeding Terrains with Genetic Terrain Programming: The Evolution of Terrain Generators [J].
Frade, Miguel ;
Fernandez de Vega, F. ;
Cotta, Carlos .
INTERNATIONAL JOURNAL OF COMPUTER GAMES TECHNOLOGY, 2009, 2009
[6]   Machine-assisted discovery of relationships in astronomy [J].
Graham, Matthew J. ;
Djorgovski, S. G. ;
Mahabal, Ashish A. ;
Donalek, Ciro ;
Drake, Andrew J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (03) :2371-2384
[7]   Data challenges of time domain astronomy [J].
Graham, Matthew J. ;
Djorgovski, S. G. ;
Mahabal, Ashish ;
Donalek, Ciro ;
Drake, Andrew ;
Longo, Giuseppe .
DISTRIBUTED AND PARALLEL DATABASES, 2012, 30 (5-6) :371-384
[8]  
Keijzer M, 2003, LECT NOTES COMPUT SC, V2610, P70
[9]  
Keijzer M, 1999, GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P1069
[10]  
Koza J.R., 1992, Genetic Programming IV: Routine Human-Competitive Machine Intelligence