Synthesis, physical-mechanical properties and fire behaviors of polyurethane foam with reactive flame retardant and expandable graphite

被引:0
作者
Yang R. [1 ]
Qiao H. [1 ]
Hu W. [1 ]
Xu L. [1 ]
Song Y. [1 ]
Li J. [1 ]
机构
[1] School of Materials Science and Engineering, Changzhou University, Changzhou, 213000, Jiangsu
来源
Huagong Xuebao/CIESC Journal | 2016年 / 67卷 / 05期
基金
中国国家自然科学基金;
关键词
Expandable graphite; Flame retardancy; Foam; Preparation; Synthesis;
D O I
10.11949/j.issn.0438-1157.20151564
中图分类号
学科分类号
摘要
Flame retardant polyurethane foams have been synthesized by using a new reactive flame retardant hexakis (4-diethyl phosphate hydroxymethyl phenoxy) cyclotriphosphazene (HPHPCP) and expandable graphite (EG). The effects of flame retardants on physical-mechanical properties, thermal stability and fire performances were investigated. In particular, the fire behaviour of the foams was studied by the oxygen index and UL-94 burning test. The results showed that the density of flame retardant foams increased with flame retardant compound. The compressive strength increased first and then declined with the decrease content of HPHPCP. However, an increase in the content of expandable graphite caused a worsening of insulating properties of PUF. The presence of HPHPCP mixture with EG brought an overall improvement in the thermal stability and fire behavior. The initial decomposition temperature (T10%), maximum decomposition temperature (Tmax) and char residues at 700℃ increased with increasing content of EG in mixture flame retardant. Moreover, the oxygen index (OI) increased in a linear way and all flame retardant PUFs can pass UL-94 HF-1 and V-0 rating. © All Right Reserved.
引用
收藏
页码:2169 / 2175
页数:6
相关论文
共 22 条
[1]  
Chattopadhyay D.K., Webster D.C., Thermal stability and flame retardancy of polyurethanes, Prog. Polym. Sci., 34, 10, pp. 1068-1133, (2009)
[2]  
Oprea S., Effect of structure on the thermal stability of curable polyester urethane urea acrylates, Polym. Degrad. Stab., 75, 1, pp. 9-15, (2002)
[3]  
Lorenzetti A., Modesti M., Gallo E., Et al., Synthesis of phosphinated polyurethane foams with improved fire behaviour, Polym. Degrad. Stab., 97, 11, pp. 2364-2369, (2012)
[4]  
Singh H., Jain A.K., Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review, J. Appl. Polym. Sci., 111, 2, pp. 1115-1143, (2009)
[5]  
Modesti M., Lorenzetti A., Halogen-free flame retardants for polymeric foams, Polym. Degrad. Stab., 78, 1, pp. 167-173, (2002)
[6]  
Lorenzetti A., Modesti M., Besco S., Et al., Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams, Polym. Degrad. Stab., 96, 8, pp. 1455-1461, (2011)
[7]  
Ravey M., Keidar I., Weil E.D., Et al., Flexible polyurethane foam (II): Fire retardation by tris (1,3-dichloro-2-propyl) phosphate part A. Examination of the vapor phase (the flame), J. Appl. Polym. Sci., 68, 2, pp. 217-229, (1998)
[8]  
Morgan A.B., Gilman J.W., An overview of flame retardancy of polymeric materials: application, technology and future directions, Fire Mater., 37, 4, pp. 259-279, (2013)
[9]  
Li F., Luo Y.J., Li X.M., Et al., Properties of waterborne polyurethane with phosphorus-nitrogen synergy effects, CIESC Journal, 63, 2, pp. 653-657, (2012)
[10]  
Hu W.T., Yang R., Xu L., Et al., Synthesis, properties and application of reactive nitrogen-phosphorus flame retardant, CIESC Journal, 66, 5, pp. 1976-1982, (2015)