NEUMANN BOUNDARY VALUE PROBLEMS FOR LOWER SEMI-CONTINUOUS NON-CONVEX DIFFERENTIAL INCLUSIONS WITH φ-LAPLACIAN

被引:0
作者
Askouraye, Najib [1 ]
Tebbaa, Ahmed [1 ]
Aitalioubrahim, Myelkebir [1 ]
机构
[1] Univ Sultan Moulay Slimane, Fac Polydisciplinary, BP 145, Khouribga, Morocco
来源
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS | 2025年 / 51卷 / 01期
关键词
differential inclusion; boundary value problem; lower semi-continuous multifunction; measurability; fixed point index; EXISTENCE;
D O I
10.30546/2409-4994.2025.51.1.1006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a combination of upper and lower solutions method with the topological degree approach, we establish the existence of solutions that satisfy the Neumann conditions for the given differential inclusion (phi(x '(t)))' is an element of F(t, x(t)), where F denotes a lower semi-continuous multi-valued map and phi represents an homeomorphism.
引用
收藏
页码:31 / 41
页数:11
相关论文
共 10 条
[1]  
Aitalioubrahim M., 2023, Discuss. Math. Differ. Incl. Control Optim., V43, P49
[2]  
Aitalioubrahim M, 2010, ELECTRON J DIFFER EQ
[3]   Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian [J].
Bereanu, C. ;
Mawhin, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :536-557
[4]   EXTENSIONS AND SELECTIONS OF MAPS WITH DECOMPOSABLE VALUES [J].
BRESSAN, A ;
COLOMBO, G .
STUDIA MATHEMATICA, 1988, 90 (01) :69-86
[5]   Multiple solutions of boundary value problems with φ-Laplacian operators and under a Wintner-Nagumo growth condition [J].
El Khattabi, Noha ;
Frigon, Marlene ;
Ayyadi, Nourredine .
BOUNDARY VALUE PROBLEMS, 2013,
[6]  
FRIGON M, 1990, CR ACAD SCI I-MATH, V310, P819
[7]  
Granas A., 2003, Springer Monogr. Math., V14
[8]  
Mawhin J., 2002, Topol. Methods Nonlinear Anal., V20, P1
[9]  
ORegan D., 2005, Nonlinear Stud., V12, P63
[10]   Boundary Value Problems for Differential Inclusions with φ-Laplacian [J].
Tebbaa, Ahmed ;
Aitalioubrahim, Myelkebir .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (03) :505-516