Nematic-isotropic phase transition in Beris-Edwards system at critical temperature

被引:0
作者
Su, Xiangxiang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词
SHARP INTERFACE LIMIT; LIQUID-CRYSTALS; CONVERGENCE-RATES; CURVATURE FLOW; WELL-POSEDNESS; CAHN SYSTEM;
D O I
10.1063/5.0246005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We are concerned with the sharp interface limit for the Beris-Edwards system in a bounded domain Omega subset of R-3 in this paper. The system can be described as the incompressible Navier-Stokes equations coupled with an evolution equation for the Q-tensor. We prove that the solutions to the Beris-Edwards system converge to the corresponding solutions of a sharp interface model under well-prepared initial data, as the thickness of the diffuse interfacial zone tends to zero. Moreover, we give not only the spatial decay estimates of the velocity vector field in the H-1 sense but also the error estimates of the phase field. The analysis relies on the relative entropy method and elaborated energy estimates. Published under an exclusive license by AIP Publishing.https://doi.org/10.1063/5.0246005
引用
收藏
页数:28
相关论文
共 35 条
[1]   SHARP INTERFACE LIMIT FOR A NAVIER--STOKES/ALLEN--CAHN SYSTEM WITH DIFFERENT VISCOSITIES [J].
Abels, Helmut ;
Fei, Mingwen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) :4039-4088
[2]  
Abels H, 2018, CONTEMP MATH, V710, P1
[3]   Sharp Interface Limit for a Stokes/Allen-Cahn System [J].
Abels, Helmut ;
Liu, Yuning .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (01) :417-502
[4]   WELL-POSEDNESS OF A FULLY COUPLED NAVIER-STOKES/Q-TENSOR SYSTEM WITH INHOMOGENEOUS BOUNDARY DATA [J].
Abels, Helmut ;
Dolzmann, Georg ;
Liu, Yuning .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :3050-3077
[5]   Orientability and Energy Minimization in Liquid Crystal Models [J].
Ball, John M. ;
Zarnescu, Arghir .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :493-535
[6]   Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory [J].
Ball, John M. ;
Majumdar, Apala .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 :1-11
[7]   Mass conserving Allen-Cahn equation and volume preserving mean curvature flow [J].
Chen, Xinfu ;
Hilhorst, D. ;
Logak, E. .
INTERFACES AND FREE BOUNDARIES, 2010, 12 (04) :527-549
[8]  
de Gennes PG., 1995, PHYS LIQUID CRYSTALS, V48, P70, DOI [10.1063/1.2808028, DOI 10.1063/1.2808028]
[9]  
Fei M., 2018, Peking Math. J, V1, P141, DOI DOI 10.1007/S42543-018-0005-3
[10]   DYNAMICS OF THE NEMATIC-ISOTROPIC SHARP INTERFACE FOR THE LIQUID CRYSTAL [J].
Fei, Mingwen ;
Wang, Wei ;
Zhang, Pingwen ;
Zhang, Zhifei .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) :1700-1724