Exploring nontoxic perovskite materials for perovskite solar cells using machine learning

被引:0
作者
Pabasara, W. G. A. [1 ,2 ]
Wijerathne, H. A. H. M. [1 ]
Karunarathne, M. G. M. M. [1 ]
Sandaru, D. M. C. [1 ]
Abeygunawardhana, Pradeep K. W. [3 ]
Sewvandi, Galhenage A. [1 ]
机构
[1] Univ Moratuwa, Fac Engn, Dept Mat Sci & Engn, Moratuwa, Sri Lanka
[2] Univ Ruhuna, Fac Technol, Dept Engn Technol, Kamburupitiya, Sri Lanka
[3] Sri Lanka Inst Informat Technol, Dept Informat Technol, Malabe, Sri Lanka
来源
DISCOVER MATERIALS | 2025年 / 5卷 / 01期
关键词
Perovskite solar cells; Machine learning; Lead alternatives; Bandgap prediction; LEAD; ENERGY; STABILITY; EFFICIENCY;
D O I
10.1007/s43939-025-00327-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Perovskite solar cells are promising renewable energy technology that faces significant challenges due to the Pb induced toxicity. The current study addresses this issue by leveraging machine learning techniques to explore Pb-free perovskite materials that ensure environmental sustainability and human safety. A highly accurate machine learning model was developed to predict Goldschmidt factor and the band gap, aiming to discover lead-free perovskites. Extreme Gradient Boost (XGBoost), Random Forest (RF), Gradient Boost Regression (GBR), and Ada Boost Regression (ABR) models were employed for this purpose. The findings exhibit that XGBoost delivers the most precise and reliable results for Goldsmith tolerance factor prediction with an accuracy of 98.5%. Furthermore, GBR model, combined with K-nearest neighbors (KNN) model delivers an impressive accuracy of 98.7% for the band gap predictions. 49 Pb-free perovskite materials were screened out considering the toxicity and the abundance. Utilizing Principal Component Analysis (PCA) and K-means clustering, six optimal materials (KBiBr3, KZnBr3, RbBiBr 3, RbZnBr3, MAGeI3, and FAGeI3null) were identified as the potential environment-friendly materials for photovoltaic applications. These results show the crucial role of machine learning and statistical analysis in discovering nontoxic and environmental-friendly perovskite materials, advancing the development of sustainable energy solutions.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics [J].
Agiorgousis, Michael L. ;
Sun, Yi-Yang ;
Choe, Duk-Hyun ;
West, Damien ;
Zhang, Shengbai .
ADVANCED THEORY AND SIMULATIONS, 2019, 2 (05)
[2]   A Machine-Learning-Assisted Crystalline Structure Prediction Framework To Accelerate Materials Discovery [J].
An, Ran ;
Xie, Congwei ;
Chu, Dongdong ;
Li, Fuming ;
Pan, Shilie ;
Yang, Zhihua .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (28) :36658-36666
[3]   New tolerance factor to predict the stability of perovskite oxides and halides [J].
Bartel, Christopher J. ;
Sutton, Christopher ;
Goldsmith, Bryan R. ;
Ouyang, Runhai ;
Musgrave, Charles B. ;
Ghiringhelli, Luca M. ;
Scheffler, Matthias .
SCIENCE ADVANCES, 2019, 5 (02)
[4]   Discovery of Lead-Free Perovskites for High-Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Conductivities [J].
Cai, Xia ;
Zhang, Yiming ;
Shi, Zejiao ;
Chen, Ying ;
Xia, Yujie ;
Yu, Anran ;
Xu, Yuanfeng ;
Xie, Fengxian ;
Shao, Hezhu ;
Zhu, Heyuan ;
Fu, Desheng ;
Zhan, Yiqiang ;
Zhang, Hao .
ADVANCED SCIENCE, 2022, 9 (04)
[5]   Machine learning models for the discovery of direct band gap materials for light emission and photovoltaics [J].
Dinic, Filip ;
Neporozhnii, Ihor ;
Voznyy, Oleksandr .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
[6]   I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions [J].
Fu, Fan ;
Pisoni, Stefano ;
Jeangros, Quentin ;
Sastre-Pellicer, Jordi ;
Kawecki, Maciej ;
Paracchino, Adriana ;
Moser, Thierry ;
Werner, Jerernie ;
Andres, Christian ;
Duchene, Leo ;
Fiala, Peter ;
Rawlence, Michael ;
Nicolay, Sylvain ;
Ballif, Christophe ;
Tiwari, Ayodhya N. ;
Buecheler, Stephan .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (10) :3074-3088
[7]  
Gamage Ayomi Pabasara W, 2025, Numerical simulation and optimization of stable CH3NH3PbI3-based2D/3D mixed dimensional perovskite solar cell, DOI [10.5281/zenodo.14730922, DOI 10.5281/ZENODO.14730922]
[8]   Screening for sustainable and lead-free perovskite halide absorbers - A database collecting insight from electronic-structure calculations [J].
Gebhardt, Julian ;
Gassmann, Andrea ;
Wei, Wei ;
Weidenkaff, Anke ;
Elsaesser, Christian .
MATERIALS & DESIGN, 2023, 234
[9]   Solar Cell Efficiency Tables (Version 66) [J].
Green, Martin A. ;
Dunlop, Ewan D. ;
Yoshita, Masahiro ;
Kopidakis, Nikos ;
Bothe, Karsten ;
Siefer, Gerald ;
Hao, Xiaojing ;
Jiang, Jessica Yajie .
PROGRESS IN PHOTOVOLTAICS, 2025, 33 (07) :795-810
[10]   Developing a predictive model for the maximum power conversion efficiency of inorganic perovskites: A combined approach using density functional theory and machine learning [J].
Han, Yuling ;
Zhao, Ziyue ;
Zhang, Yijun ;
Yang, Xiaodong ;
Wang, Baolin ;
Shen, Yang .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 245