Object-Contextual Representations for Semantic Segmentation

被引:1009
作者
Yuan, Yuhui [1 ,2 ,3 ]
Chen, Xilin [1 ,2 ]
Wang, Jingdong [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc Chinese Acad Sc, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Microsoft Res Asia, Beijing, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT VI | 2020年 / 12351卷
关键词
Semantic segmentation; Context aggregation;
D O I
10.1007/978-3-030-58539-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the context aggregation problem in semantic segmentation. Motivated by that the label of a pixel is the category of the object that the pixel belongs to, we present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class. First, we learn object regions under the supervision of the ground-truth segmentation. Second, we compute the object region representation by aggregating the representations of the pixels lying in the object region. Last, we compute the relation between each pixel and each object region, and augment the representation of each pixel with the object-contextual representation which is a weighted aggregation of all the object region representations. We empirically demonstrate our method achieves competitive performance on various benchmarks: Cityscapes, ADE20K, LIP, PASCAL-Context and COCO-Stuff. Our submission "HRNet + OCR + SegFix" achieves the 1(st) place on the Cityscapes leaderboard by the ECCV 2020 submission deadline. Code is available at: https://git.io/ openseg and https://git.io/HRNet.OCR.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 83 条
[51]   Towards Bridging Semantic Gap to Improve Semantic Segmentation [J].
Pang, Yanwei ;
Li, Yazhao ;
Shen, Jianbing ;
Shao, Ling .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4229-4238
[52]  
Ruan T, 2018, Arxiv, DOI arXiv:1809.05996
[53]   Not Using the Car to See the Sidewalk - Quantifying and Controlling the Effects of Context in Classification and Segmentation [J].
Shetty, Rakshith ;
Schiele, Bernt ;
Fritz, Mario .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8210-8218
[54]  
Sun K, 2019, Arxiv, DOI arXiv:1904.04514
[55]   Gated-SCNN: Gated Shape CNNs for Semantic Segmentation [J].
Takikawa, Towaki ;
Acuna, David ;
Jampani, Varun ;
Fidler, Sanja .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :5228-5237
[56]  
Tao AD, 2020, Arxiv, DOI arXiv:2005.10821
[57]   Decoders Matter for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature Aggregation [J].
Tian, Zhi ;
He, Tong ;
Shen, Chunhua ;
Yan, Youliang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3121-3130
[58]   Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation [J].
Tu, Zhuowen ;
Bai, Xiang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) :1744-1757
[59]   Selective Search for Object Recognition [J].
Uijlings, J. R. R. ;
van de Sande, K. E. A. ;
Gevers, T. ;
Smeulders, A. W. M. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 104 (02) :154-171
[60]  
Vaswani A, 2017, ADV NEUR IN, V30