Object-Contextual Representations for Semantic Segmentation

被引:1009
作者
Yuan, Yuhui [1 ,2 ,3 ]
Chen, Xilin [1 ,2 ]
Wang, Jingdong [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc Chinese Acad Sc, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Microsoft Res Asia, Beijing, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT VI | 2020年 / 12351卷
关键词
Semantic segmentation; Context aggregation;
D O I
10.1007/978-3-030-58539-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study the context aggregation problem in semantic segmentation. Motivated by that the label of a pixel is the category of the object that the pixel belongs to, we present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class. First, we learn object regions under the supervision of the ground-truth segmentation. Second, we compute the object region representation by aggregating the representations of the pixels lying in the object region. Last, we compute the relation between each pixel and each object region, and augment the representation of each pixel with the object-contextual representation which is a weighted aggregation of all the object region representations. We empirically demonstrate our method achieves competitive performance on various benchmarks: Cityscapes, ADE20K, LIP, PASCAL-Context and COCO-Stuff. Our submission "HRNet + OCR + SegFix" achieves the 1(st) place on the Cityscapes leaderboard by the ECCV 2020 submission deadline. Code is available at: https://git.io/ openseg and https://git.io/HRNet.OCR.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 83 条
[1]  
Islam MA, 2017, Arxiv, DOI arXiv:1703.00551
[2]  
[Anonymous], 2009, CVPR
[3]  
Arbeláez P, 2012, PROC CVPR IEEE, P3378, DOI 10.1109/CVPR.2012.6248077
[4]   In-Place Activated BatchNorm for Memory-Optimized Training of DNNs [J].
Bulo, Samuel Rota ;
Porzi, Lorenzo ;
Kontschieder, Peter .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5639-5647
[5]   COCO-Stuff: Thing and Stuff Classes in Context [J].
Caesar, Holger ;
Uijlings, Jasper ;
Ferrari, Vittorio .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1209-1218
[6]   Region-Based Semantic Segmentation with End-to-End Training [J].
Caesar, Holger ;
Uijlings, Jasper ;
Ferrari, Vittorio .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :381-397
[7]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[8]  
Chen LC, 2018, ADV NEUR IN, V31
[9]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848