BIOPHYSICAL PARAMETER ESTIMATION USING EARTH OBSERVATION DATA IN A MULTI-SENSOR DATA FUSION APPROACH: CYCLEGAN

被引:2
作者
Efremova, Natalia [1 ]
Erten, E. [2 ]
机构
[1] Univ Oxford, Deepplanet, Oxford OX1 1HP, England
[2] Istanbul Tech Univ, Dept Geomat Engn, TR-34469 Istanbul, Turkey
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
关键词
soil moisture; Sentinel-1; Sentinel-2; cycleGAN; CNN; PCA; autoencoders; support vector regression; ridge regression;
D O I
10.1109/IGARSS47720.2021.9553561
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Water management and up-to-date soil moisture (SM) information are crucial to ensure agricultural activities in dry-land farming regions. In this context, remote sensing imagery coupled with machine learning techniques can provide large scale SM information if there is enough data for training, which is really limited in reality. In this paper, we explored the potential of cycle-consistent Generative Adversarial Network (GAN) for data augmentation for training machine learning algorithms, which try to model spatial and temporal dependencies between the SM prediction (output) and the remote sensing imagery (input features). Specifically, the freely available SAR (Sentinel-1) and optical (Sentinel-2) time series data were evaluated together to predict SM using GANs. The experiments demonstrate that the proposed methodology outperforms the compared state-of-the-art methods if there is not enough data to train a regression convolutional neural networks (CNN) to predict SM content.
引用
收藏
页码:5965 / 5968
页数:4
相关论文
共 9 条
[1]  
Efremova N., 2021, IEEE T GEOSCIENCE RE
[2]   Selection of PolSAR Observables for Crop Biophysical Variable Estimation With Global Sensitivity Analysis [J].
Erten, Esra ;
Taskin, Gulsen ;
Lopez-Sanchez, Juan M. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (05) :766-770
[3]  
Foley Conrad James, 2020, SMART CAST PREDICTIN
[4]   A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses [J].
Karthikeyan, L. ;
Chawla, Ila ;
Mishra, Ashok K. .
JOURNAL OF HYDROLOGY, 2020, 586
[5]   Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data [J].
Mandal, Dipankar ;
Kumar, Vineet ;
Ratha, Debanshu ;
Lopez-Sanchez, Juan M. ;
Bhattacharya, Avik ;
McNairn, Heather ;
Rao, Y. S. ;
Ramana, K. V. .
REMOTE SENSING OF ENVIRONMENT, 2020, 237
[6]   Soil Moisture Estimation by SAR in Alpine Fields Using Gaussian Process Regressor Trained by Model Simulations [J].
Stamenkovic, Jelena ;
Guerriero, Leila ;
Ferrazzoli, Paolo ;
Notarnicola, Claudia ;
Greifeneder, Felix ;
Thiran, Jean-Philippe .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09) :4899-4912
[7]   A systematic method for spatio-temporal phenology estimation of paddy rice using time series Sentinel-1 images [J].
Yang, Huijin ;
Pan, Bin ;
Li, Ning ;
Wang, Wei ;
Zhang, Jian ;
Zhang, Xianlong .
REMOTE SENSING OF ENVIRONMENT, 2021, 259 (259)
[8]   Assessment of Paddy Rice Height: Sequential Inversion of Coherent and Incoherent Models [J].
Yuzugullu, Onur ;
Erten, Esra ;
Hajnsek, Irena .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) :3001-3013
[9]   Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [J].
Zhu, Jun-Yan ;
Park, Taesung ;
Isola, Phillip ;
Efros, Alexei A. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2242-2251