AN UNSUPERVISED DEEP LEARNING METHOD FOR SUBSURFACE TARGET DETECTION IN RADAR SOUNDER DATA

被引:7
作者
Donini, Elena [1 ,2 ]
Bovolo, Francesca [1 ]
Bruzzone, Lorenzo [2 ]
机构
[1] Fdn Bruno Kessler, Ctr Digital Soc, Trento, Italy
[2] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
关键词
deep learning; statistical analysis; subsurface target detection; radar sounder;
D O I
10.1109/IGARSS47720.2021.9554785
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Radar sounder data are widely used for investigating geological structures and processes in the subsurface of icy and arid areas. Visual interpretation is one of the main techniques used in the literature to extract information from radargrams. There exist some automatic approaches but mostly supervised. However, no methods exploit deep learning in an unsupervised way. Here, we propose an automatic and unsupervised technique for extracting information on the subsurface geological targets. The technique is built upon three steps: i) generation of a coarse segmentation map based on the radargram statistical properties, ii) refinement of the coarse map with deep learning to detect target reflections, and iii) analysis of the deep features to identify buried targets. We tested the proposed method on MARSIS radar data acquired near the South Pole of Mars. The experimental results prove the effectiveness of the proposed method.
引用
收藏
页码:2955 / 2958
页数:4
相关论文
共 9 条
[1]   Deep Learning Algorithms for Detecting Explosive Hazards in Ground Penetrating Radar Data [J].
Besaw, Lance E. ;
Stimac, Philip J. .
DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XIX, 2014, 9072
[2]   An Unsupervised Fuzzy System for the Automatic Detection of Candidate Lava Tubes in Radar Sounder Data [J].
Donini, Elena ;
Carrer, Leonardo ;
Gerekos, Christopher ;
Bruzzone, Lorenzo ;
Bovolo, Francesca .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   An automatic approach to map refreezing ice in radar sounder data [J].
Donini, Elena ;
Thakur, Sanchari ;
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
[4]   Analysis of Radar Sounder Signals for the Automatic Detection and Characterization of Subsurface Features [J].
Ferro, Adamo ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4333-4348
[5]   Radar evidence of subglacial liquid water on Mars [J].
Orosei, R. ;
Lauro, S. E. ;
Pettinelli, E. ;
Cicchetti, A. ;
Coradini, M. ;
Cosciotti, B. ;
Di Paolo, F. ;
Flamini, E. ;
Mattei, E. ;
Pajola, M. ;
Soldovieri, F. ;
Cartacci, M. ;
Cassenti, F. ;
Frigeri, A. ;
Giuppi, S. ;
Martufi, R. ;
Masdea, A. ;
Mitri, G. ;
Nenna, C. ;
Noschese, R. ;
Restano, M. ;
Seu, R. .
SCIENCE, 2018, 361 (6401) :490-493
[6]   THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS [J].
OTSU, N .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1979, 9 (01) :62-66
[7]   RADAR SENSOR SIMULATION WITH GENERATIVE ADVERSARIAL NETWORK [J].
Rahnemoonfar, Maryam ;
Yari, Masoud ;
Paden, John .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :7001-7004
[8]   Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images [J].
Saha, Sudipan ;
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06) :3677-3693
[9]  
Xia X., 2017, ARXIV