A novel genetic algorithm-based calibration framework for crystal plasticity parameters in DP780 steels using multiscale mechanical testing

被引:0
作者
Kong, Linghao [1 ]
Pan, Boyu [1 ]
Henrich, Manuel [1 ]
Stebner, Sophie [1 ]
Muenstermann, Sebastian [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Met Forming IBF, Intzestr 10, D-52072 Aachen, Germany
关键词
Crystal plasticity; Mutiscale test; Dual-phase steel; Genetic algorithm; Machine learning; STRAIN; DEFORMATION; STRESS;
D O I
10.1016/j.commatsci.2025.114088
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a robust genetic algorithm (GA)-based framework for calibrating crystal plasticity (CP) model parameters in dual-phase (DP) steels using multiscale mechanical testing. To overcome challenges associated with phase-specific parameter identification and temperature dependence, a two-stage calibration strategy is developed. In the first stage, nanoindentation tests at multiple temperatures are employed to determine the CP parameters of ferrite by matching simulated and experimental force-displacement curves. In the second stage, uniaxial tensile data are used to calibrate martensite parameters via representative volume elements (RVEs). The GA efficiently explores the high-dimensional parameter space and ensures fast convergence while maintaining physical consistency. Comparative results show that the GA-calibrated parameters outperform those obtained by conventional trial-and-error methods, with better alignment to experimental data. The proposed framework enables accurate and scalable CP calibration across different temperatures and offers broad applicability to multiscale modeling and alloy design.
引用
收藏
页数:17
相关论文
共 53 条
[1]   Elastic constants of monocrystal iron from 3 to 500 K [J].
Adams, J. J. ;
Agosta, D. S. ;
Leisure, R. G. ;
Ledbetter, H. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
[2]   Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization [J].
Alibrahim, Hussain ;
Ludwig, Simone A. .
2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, :1551-1559
[3]   Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels [J].
Alipour, Mandi ;
Torabi, Mohammad Amin ;
Sareban, Mohammad ;
Lashini, Hadi ;
Sadeghi, Ehsan ;
Fazaeli, Abolfaz, I ;
Habibi, Mostafa ;
Hashemi, Ramin .
MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2020, 48 (05) :525-541
[4]   Non-monotonic plasticity and fracture in DP1000: Stress-state, strain-rate and temperature influence [J].
Chandran, Sarath ;
Verleysen, Patricia .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 267
[5]   Dilatometric study of continuous cooling transformation of intercritical austenite in cold rolled AHSS-DP steels [J].
Costa, Patricia ;
Altamirano-Guerrero, Gerardo ;
Salinas-Rodriguez, Armando ;
Salas-Reyes, Antonio E. ;
Goodwin, Frank .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 19 :4360-4370
[6]   Computational crystal plasticity [J].
Dawson, PR .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (1-2) :115-130
[7]   Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure [J].
Diehl, M. ;
An, D. ;
Shanthraj, P. ;
Zaefferer, S. ;
Roters, F. ;
Raabe, D. .
PHYSICAL MESOMECHANICS, 2017, 20 (03) :311-323
[8]  
Gahr K.-H.Z., 1987, Microstructure and Wear of Materials, V10, P8, DOI [10.1016/S0167-8922(08)70720-X, DOI 10.1016/S0167-8922(08)70720-X]
[9]   Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles [J].
Gerges, Firas ;
Zouein, Germain ;
Azar, Danielle .
PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE (ICCAI 2018), 2018, :19-22
[10]   Low cycle fatigue properties assessment and damage influence on DP 500/800 steel sheet [J].
Gonzalez-Zapatero, Walter F. ;
Rosado-Carrasco, Juliana G. ;
Ambriz, R. R. ;
Jaramillo, D. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 :2231-2243