External assessment of an artificial intelligence-enabled electrocardiogram for aortic stenosis detection

被引:0
作者
Kim, Darae [1 ]
Lee, Eunjung [2 ]
Kim, Jihoon [1 ]
Kim, Eun Kyoung [1 ]
Chang, Sung-A [1 ]
Park, Sung-Ji [1 ]
Choi, Jin-Oh [1 ]
On, Young Keun [1 ]
Attia, Zachi [2 ]
Friedman, Paul [2 ]
Park, Kyoung-Min [1 ]
Oh, Jae K. [2 ]
机构
[1] Sungkyunkwan Univ, Heart Vasc Stroke Inst, Samsung Med Ctr, Dept Internal Med,Div Cardiol,Sch Med, Seoul, South Korea
[2] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2025年 / 6卷 / 04期
关键词
Artificial intelligence; Electrocardiogram; Aortic stenosis; VALVE STENOSIS; EARLY SURGERY; SEVERITY;
D O I
10.1093/ehjdh/ztaf067
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims To assess the performance of an artificial intelligence-enabled electrocardiogram (AI-ECG) algorithm in identifying patients with moderate to severe aortic stenosis (AS) in an Asian cohort from a tertiary care centre.Methods and results We identified a randomly selected patients >= 60 years old who underwent echocardiography and ECG within in 31 days between 2012 and 2021 at the Samsung Medical Center in Korea. Patients with previous cardiac surgery, prosthetic valves, or pacemakers were excluded. The AI-ECG model, originally developed and validated by Mayo Clinic in the USA, was applied without fine-tuning. Performance metrics, including the area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy, were calculated to compare AI-ECG predictions with TTE-confirmed AS status. Among 5425 patients, 1095 had moderate to severe AS, and 4330 age- and sex-matched patients without AS were included as controls. The AI-ECG model achieved an AUC of 0.85 (95% CI: 0.84-0.87) in detecting moderate to severe AS. Sensitivity, specificity, PPV, NPV, and accuracy were 0.83, 0.65, 0.37, 0.94, and 68.29%, respectively. The model's performance was consistent across various age and sex subgroups, with sensitivity increasing in older patients.Conclusion The AI-ECG model developed in the USA demonstrated comparable performance in detecting moderate to severe AS in an Asian cohort compared with its original validation population. These findings highlight the potential utility of AI-ECG as a non-invasive screening tool for AS across diverse patient populations.
引用
收藏
页码:656 / 664
页数:9
相关论文
共 22 条
[1]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[2]   Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Yao, Xiaoxi ;
Lopez-Jimenez, Francisco ;
Mohan, Tarun L. ;
Pellikka, Patricia A. ;
Carter, Rickey E. ;
Shah, Nilay D. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) :668-674
[3]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[4]  
Baumgartner H, 2018, EUR HEART J, V39, P1980, DOI [10.1093/eurheartj/ehx636, 10.1093/eurheartj/ehx391]
[5]   Timing of intervention in asymptomatic patients with valvular heart disease [J].
Baumgartner, Helmut ;
Iung, Bernard ;
Otto, Catherine M. .
EUROPEAN HEART JOURNAL, 2020, 41 (45) :4349-+
[6]  
Baumgartner H, 2017, J AM SOC ECHOCARDIOG, V30, P372, DOI [10.1093/ehjci/jew335, 10.1016/j.echo.2017.02.009]
[7]   Risk stratification in asymptomatic severe aortic stenosis: a critical appraisal [J].
Bhattacharyya, Sanjeev ;
Hayward, Carl ;
Pepper, John ;
Senior, Roxy .
EUROPEAN HEART JOURNAL, 2012, 33 (19) :2377-2387
[8]   Electrocardiogram screening for aortic valve stenosis using artificial intelligence [J].
Cohen-Shelly, Michal ;
Attia, Zachi, I ;
Friedman, Paul A. ;
Ito, Saki ;
Essayagh, Benjamin A. ;
Ko, Wei-Yin ;
Murphree, Dennis H. ;
Michelena, Hector, I ;
Enriquez-Sarano, Maurice ;
Carter, Rickey E. ;
Johnson, Patrick W. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Oh, Jae K. .
EUROPEAN HEART JOURNAL, 2021, 42 (30) :2885-+
[9]   Natural History, Diagnostic Approaches, and Therapeutic Strategies for Patients With Asymptomatic Severe Aortic Stenosis [J].
Genereux, Philippe ;
Stone, Gregg W. ;
O'Gara, Patrick T. ;
Marquis-Gravel, Guillaume ;
Redfors, Bjorn ;
Giustino, Gennaro ;
Pibarot, Philippe ;
Bax, Jeroen J. ;
Bonow, Robert O. ;
Leon, Martin B. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 67 (19) :2263-2288
[10]   Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis [J].
Kang, Duk-Hyun ;
Park, Sung-Ji ;
Lee, Seung-Ah ;
Lee, Sahmin ;
Kim, Dae-Hee ;
Kim, Hyung-Kwan ;
Yun, Sung-Cheol ;
Hong, Geu-Ru ;
Song, Jong-Min ;
Chung, Cheol-Hyun ;
Song, Jae-Kwan ;
Lee, Jae-Won ;
Park, Seung-Woo .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (02) :111-119