Brain Tumor Segmentation from Multi-spectral MR Image Data Using Random Forest Classifier

被引:4
作者
Csaholczi, Szabolcs [1 ]
Iclanzan, David [1 ]
Kovacs, Levente [2 ]
Szilagyi, Laszlo [1 ,2 ]
机构
[1] Sapientia Hungarian Univ Transylvania, Computat Intelligence Res Grp, Targu Mures, Romania
[2] Obuda Univ, Univ Res Innovat & Serv Ctr EKIK, Budapest, Hungary
来源
NEURAL INFORMATION PROCESSING, ICONIP 2020, PT I | 2020年 / 12532卷
基金
欧洲研究理事会;
关键词
Magnetic resonance imaging; Brain tumor detection; Tumor segmentation; Random forest; INHOMOGENEITY; FEATURES; MODEL;
D O I
10.1007/978-3-030-63830-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of brain tumor segmentation techniques based on multi-spectral MR image data has relevant impact on the clinical practice via better diagnosis, radiotherapy planning and follow-up studies. This task is also very challenging due to the great variety of tumor appearances, the presence of several noise effects, and the differences in scanner sensitivity. This paper proposes an automatic procedure trained to distinguish gliomas from normal brain tissues in multi-spectral MRI data. The procedure is based on a random forest (RF) classifier, which uses 80 computed features beside the four observed ones, including morphological ones, gradients, and Gabor wavelet features. The intermediary segmentation outcome provided by the RF is fed to a twofold post-processing, which regularizes the shape of detected tumors and enhances the segmentation accuracy. The performance of the procedure was evaluated using the 274 records of the BraTS 2015 train data set. The achieved overall Dice scores between 85-86% represent highly accurate segmentation.
引用
收藏
页码:174 / 184
页数:11
相关论文
共 28 条
[1]  
Bakas S., 2019, arXiv
[2]   State of the art survey on MRI brain tumor segmentation [J].
Gordillo, Nelly ;
Montseny, Eduard ;
Sobrevilla, Pilar .
MAGNETIC RESONANCE IMAGING, 2013, 31 (08) :1426-1438
[3]   Automated Brain Tumor Segmentation Based on Multi-Planar Superpixel Level Features Extracted From 3D MR Images [J].
Imtiaz, Tamjid ;
Rifat, Shahriar ;
Fattah, Shaikh Anowarul ;
Wahid, Khan A. .
IEEE ACCESS, 2020, 8 :25335-25349
[4]   Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors [J].
Islam, Atiq ;
Reza, Syed M. S. ;
Iftekharuddin, Khan M. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (11) :3204-3215
[5]   Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model [J].
Le, Matthieu ;
Delingette, Herve ;
Kalpathy-Cramer, Jayashree ;
Gerstner, Elizabeth R. ;
Batchelor, Tracy ;
Unkelbach, Jan ;
Ayache, Nicholas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (03) :815-825
[6]   Brain Tumor Segmentation with Optimized Random Forest [J].
Lefkovits, Laszlo ;
Lefkovits, Szidonia ;
Szilagyi, Laszlo .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 :88-99
[7]   Brain Tumor Segmentation and Survival Prediction Using a Cascade of Random Forests [J].
Lefkovits, Szidonia ;
Szilagyi, Laszlo ;
Lefkovits, Laszlo .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :334-345
[8]   Glioma Segmentation With a Unified Algorithm in Multimodal MRI Images [J].
Li, Qingneng ;
Gao, Zhifan ;
Wang, Qiuyu ;
Xia, Jun ;
Zhang, Heye ;
Zhang, Huailing ;
Liu, Huafeng ;
Li, Shuo .
IEEE ACCESS, 2018, 6 :9543-9553
[9]   A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation- With Application to Tumor and Stroke [J].
Menze, Bjoern H. ;
Van Leemput, Koen ;
Lashkari, Danial ;
Riklin-Raviv, Tammy ;
Geremia, Ezequiel ;
Alberts, Esther ;
Gruber, Philipp ;
Wegener, Susanne ;
Weber, Marc-Andre ;
Szekely, Gabor ;
Ayache, Nicholas ;
Golland, Polina .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) :933-946
[10]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024