Split RNA switch orchestrates pre- and post-translational control to enable cell type-specific gene expression

被引:0
作者
Abe, Itsuki [1 ,2 ,3 ,4 ]
Ohno, Hirohisa [1 ]
Mochizuki, Megumi [1 ]
Hayashi, Karin [1 ]
Saito, Hirohide [1 ,3 ]
机构
[1] Kyoto Univ, Ctr iPS Cell Res & Applicat, 53 Kawahara Cho,Sakyo Ku, Kyoto, Japan
[2] Kyoto Univ, Grad Sch Med, Yoshida Konoe Cho,Sakyo Ku, Kyoto, Japan
[3] Univ Tokyo, Inst Quantitat Biosci, Tokyo, Japan
[4] Univ Tokyo, Dept Bioengn, Sch Engn, Tokyo, Japan
关键词
TRANSGENE EXPRESSION; DNAE INTEIN; ENDOGENOUS MICRORNA; THYMIDINE KINASE; HIGHLY EFFICIENT; MOUSE MODEL; PROTEIN; GANCICLOVIR; DYSTROPHIN; PRODUCT;
D O I
10.1038/s41467-025-60392-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA switch is a synthetic RNA-based technology that controls gene expression in response to cellular RNAs and proteins, thus enabling cell type-specific gene regulation and holding promise for gene therapy, regenerative medicine, and cell therapy. However, individual RNA switches often lack the specificity required for practical applications due to low ON/OFF ratios and difficulty in finding distinct and single biomolecule targets. To address these issues, we present "split RNA switches" that integrate outputs from multiple RNA switches by exploiting protein splicing. We show that split RNA switches significantly improve the ON/OFF ratio of microRNA-responsive ON switch system by canceling leaky OFF level in human cells. Using this approach, we achieve efficient cell purification using drug-resistance genes based on endogenous microRNA profiles and CRISPR-mediated genome editing with minimal off-target-cell effects. Additionally, we demonstrate RNA-based synthetic circuits using split RNA switches to enable the detection of multiple microRNAs and proteins with logical operations. Split RNA switches highlight the potential of post-translational processing as a versatile and comprehensive strategy for advancing mRNA-based therapeutic technologies.
引用
收藏
页数:18
相关论文
共 85 条
[1]   Theoretic Applicability of Antisense-Mediated Exon Skipping for Duchenne Muscular Dystrophy Mutations [J].
Aartsma-Rus, Annemieke ;
Fokkema, Ivo ;
Verschuuren, Jan ;
Ginjaar, Leke ;
van Deutekom, Judith ;
van Ommen, Gert-Jan ;
den Dunnen, Johan T. .
HUMAN MUTATION, 2009, 30 (03) :293-299
[2]   In vivo protein-based biosensors: seeing metabolism in real time [J].
Alexandrov, Kirill ;
Vickers, Claudia E. .
TRENDS IN BIOTECHNOLOGY, 2023, 41 (01) :19-26
[3]   Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy [J].
Amoasii, Leonela ;
Hildyard, John C. W. ;
Li, Hui ;
Sanchez-Ortiz, Efrain ;
Mireault, Alex ;
Caballero, Daniel ;
Harron, Rachel ;
Stathopoulou, Thaleia-Rengina ;
Massey, Claire ;
Shelton, John M. ;
Bassel-Duby, Rhonda ;
Piercy, Richard J. ;
Olson, Eric N. .
SCIENCE, 2018, 362 (6410) :86-90
[4]   Highly Efficient and More General cis- and trans-Splicing Inteins through Sequential Directed Evolution [J].
Appleby-Tagoe, Julia H. ;
Thiel, Ilka V. ;
Wang, Yi ;
Wang, Yanfei ;
Mootz, Henning D. ;
Liu, Xiang-Qin .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (39) :34440-34447
[5]   Programmable single-cell mammalian biocomputers [J].
Auslaender, Simon ;
Auslaender, David ;
Mueller, Marius ;
Wieland, Markus ;
Fussenegger, Martin .
NATURE, 2012, 487 (7405) :123-+
[6]   Metazoan MicroRNAs [J].
Bartel, David P. .
CELL, 2018, 173 (01) :20-51
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]   The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations [J].
Bladen, Catherine L. ;
Salgado, David ;
Monges, Soledad ;
Foncuberta, Maria E. ;
Kekou, Kyriaki ;
Kosma, Konstantina ;
Dawkins, Hugh ;
Lamont, Leanne ;
Roy, Anna J. ;
Chamova, Teodora ;
Guergueltcheva, Velina ;
Chan, Sophelia ;
Korngut, Lawrence ;
Campbell, Craig ;
Dai, Yi ;
Wang, Jen ;
Barisic, Nina ;
Brabec, Petr ;
Lahdetie, Jaana ;
Walter, Maggie C. ;
Schreiber-Katz, Olivia ;
Karcagi, Veronika ;
Garami, Marta ;
Viswanathan, Venkatarman ;
Bayat, Farhad ;
Buccella, Filippo ;
Kimura, En ;
Koeks, Zaida ;
van den Bergen, Janneke C. ;
Rodrigues, Miriam ;
Roxburgh, Richard ;
Lusakowska, Anna ;
Kostera-Pruszczyk, Anna ;
Zimowski, Janusz ;
Santos, Rosario ;
Neagu, Elena ;
Artemieva, Svetlana ;
Rasic, Vedrana Milic ;
Vojinovic, Dina ;
Posada, Manuel ;
Bloetzer, Clemens ;
Jeannet, Pierre-Yves ;
Joncourt, Franziska ;
Diaz-Manera, Jordi ;
Gallardo, Eduard ;
Karaduman, A. Ayse ;
Topaloglu, Haluk ;
El Sherif, Rasha ;
Stringer, Angela ;
Shatillo, Andriy V. .
HUMAN MUTATION, 2015, 36 (04) :395-402
[9]   Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state [J].
Brown, Brian D. ;
Gentner, Bernhard ;
Cantore, Alessio ;
Colleoni, Silvia ;
Amendola, Mario ;
Zingale, Anna ;
Baccarini, Alessia ;
Lazzari, Giovanna ;
Galli, Cesare ;
Naldini, Luigi .
NATURE BIOTECHNOLOGY, 2007, 25 (12) :1457-1467
[10]   Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer [J].
Brown, Brian D. ;
Venneri, Mary Anna ;
Zingale, Anna ;
Sergi, Lucia Sergi ;
Naldini, Luigi .
NATURE MEDICINE, 2006, 12 (05) :585-591