Bulk viscous matter interacting with decaying vacuum energy density: a model for late-time evolution of the Universe

被引:0
作者
Nandi, Tanmay [1 ]
Choudhuri, Amitava [1 ]
机构
[1] Univ Burdwan, Dept Phys, Purba Bardhaman 713104, W Bengal, India
来源
EUROPEAN PHYSICAL JOURNAL C | 2025年 / 85卷 / 07期
关键词
HUBBLE-SPACE-TELESCOPE; GENERALIZED 2ND LAW; DARK-ENERGY; COSMOLOGICAL CONSTRAINTS; CONSTANT; LAMBDA; THERMODYNAMICS; STATEFINDER; ANISOTROPY; EQUATION;
D O I
10.1140/epjc/s10052-025-14500-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The late-time cosmological expansion within a flat Friedmann-Lema & icirc;tre-Robertson-Walker (FLRW) spacetime is studied using a model characterized by bulk viscous dark matter (bulk viscosity zeta=zeta 0 rho mH-1+zeta 1H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta = \zeta _0 \rho _m H<^>{-1}+\zeta _1 H $$\end{document}, zeta 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _0$$\end{document} & zeta 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _1$$\end{document} are constants, and H, the Hubble parameter) interacting with a decaying vacuum density rho Lambda=C0+3 nu H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\Lambda } = \mathcal {C}_0 + 3\nu H<^>2$$\end{document}, where C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_0$$\end{document} and nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} are constants. The bulk viscous pressure is described by Eckart's theory. The interaction term is defined as Q=3H alpha(rho m+rho Lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q=3H\alpha (\rho _m+\rho _\Lambda )$$\end{document}, where alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, the interaction parameter. Analytical solutions for the Hubble parameter and the scale factor have been derived. The validity of the models is evaluated by constraining their free parameters using observational data from Cosmic Chronometer, the Pantheon, and a combination of both datasets. The goodness of fit is assessed by minimizing the chi 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi <^>2$$\end{document} function utilizing the Markov Chain Monte Carlo (MCMC) method. Selection information criteria, namely AIC and BIC, have been obtained to analyze the models' stability. Additionally, several essential cosmological parameters characterizing the evolution dynamics are estimated and discussed analytically, and compared with the Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM model. The proposed model suggests a transition from the deceleration to the acceleration phase, indicating thermodynamic equilibrium in the distant future, aligning with the Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM model. The model shows a slight deviation from Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM model and effectively reduces the H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0$$\end{document} tension between local measurements by R21 and global measurements by Planck 2018. The model is consistent with thermodynamic laws and upholds the second law of thermodynamics. Finally, Phase-space analysis supports the same evolutionary transitional phases.
引用
收藏
页数:21
相关论文
共 186 条
[71]   Constraints on cosmological models from Hubble Space Telescope observations of high-z supernovae [J].
Garnavich, PM ;
Kirshner, RP ;
Challis, P ;
Tonry, J ;
Gilliland, RL ;
Smith, RC ;
Clocchiatti, A ;
Diercks, A ;
Filippenko, AV ;
Hamuy, M ;
Hogan, CJ ;
Leibundgut, B ;
Phillips, MM ;
Reiss, D ;
Riess, AG ;
Schmidt, BP ;
Schommer, RA ;
Spyromilio, J ;
Stubbs, C ;
Suntzeff, NB ;
Wells, L .
ASTROPHYSICAL JOURNAL, 1998, 493 (02) :L53-+
[72]  
Garriga J, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.023517
[73]   Measurement of the dipole in the cross-correlation function of galaxies [J].
Gaztanaga, Enrique ;
Bonvin, Camille ;
Hui, Lam .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (01)
[74]  
Gelman A., 1995, Bayesian data analysis, DOI DOI 10.1201/9780429258411
[75]   Redshift drift exploration for interacting dark energy [J].
Geng, Jia-Jia ;
Li, Yun-He ;
Zhang, Jing-Fei ;
Zhang, Xin .
EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (08)
[76]  
Gómez G, 2023, EUR PHYS J PLUS, V138, DOI 10.1140/epjp/s13360-023-04367-6
[77]   DARK MATTER, LONG-RANGE FORCES, AND LARGE-SCALE STRUCTURE [J].
GRADWOHL, BA ;
FRIEMAN, JA .
ASTROPHYSICAL JOURNAL, 1992, 398 (02) :407-424
[78]   Probing the coupling between dark components of the universe [J].
Guo, Zong-Kuan ;
Ohta, Nobuyoshi ;
Tsujikawa, Shinji .
PHYSICAL REVIEW D, 2007, 76 (02)
[79]   Bianchi Type-I Bulk Viscosity with a DE Cosmological Model [J].
Gusu, Daba Meshesha .
ADVANCES IN HIGH ENERGY PHYSICS, 2020, 2020
[80]  
Hagiwara K., 2002, Phys. Rev. D (Part. Fields), V66