Topological Approaches to Deep Learning

被引:29
作者
Carlsson, Gunnar [1 ]
Gabrielsson, Rickard Bruel [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
TOPOLOGICAL DATA ANALYSIS, ABEL SYMPOSIUM 2018 | 2020年 / 15卷
关键词
D O I
10.1007/978-3-030-43408-3_5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce an algebraic formalism to describe and construct deep learning architectures as well as actions on them. We show how our algebraic formalism in conjunction with topological data analysis enables the construction of neural network architectures from a priori geometries, geometries obtained from data analysis, and purely data driven geometries. We also demonstrate how these techniques can improve the transparency and performance of deep neural networks.
引用
收藏
页码:119 / 146
页数:28
相关论文
共 20 条
[1]  
Ayasdi, 2016, TDA and machine learning
[2]   On the local behavior of spaces of natural images [J].
Carlsson, Gunnar ;
Ishkhanov, Tigran ;
de Silva, Vin ;
Zornorodian, Afra .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 76 (01) :1-12
[3]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
Gabrielsson RB, 2019, Arxiv, DOI arXiv:1810.03234
[6]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[7]  
Huang L., 2011, ACM WORKSH SEC ART I, P43, DOI [DOI 10.1145/2046684.2046692, 10.1145/2046684, 10.1145/2046684.2046692]
[8]   RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN CATS VISUAL CORTEX [J].
HUBEL, DH ;
WIESEL, TN .
JOURNAL OF PHYSIOLOGY-LONDON, 1962, 160 (01) :106-&
[9]  
Krizhevsky A., 2009, Technical report
[10]  
LeCun Y., THE MNIST DATABASE of handwritten digits