Insights into the Heterogeneity of Cognitive Aging: A Comparative Analysis of Two Data-Driven Clustering Algorithms

被引:0
作者
Nguyen, Truc Tran Thanh [1 ,2 ]
Chang, Yu-Ling [3 ,4 ]
机构
[1] Natl Taiwan Univ, Taiwan Int Grad Program Interdisciplinary Neurosci, Taipei, Taiwan
[2] Acad Sinica, Taipei, Taiwan
[3] Natl Taiwan Univ, Coll Sci, Dept Psychol, Taipei, Taiwan
[4] Natl Taiwan Univ, Grad Inst Brain & Mind Sci, Coll Med, Taipei, Taiwan
来源
JOURNALS OF GERONTOLOGY SERIES B-PSYCHOLOGICAL SCIENCES AND SOCIAL SCIENCES | 2025年 / 80卷 / 07期
关键词
Cognition; Cluster analysis; Machine learning; Neuropsychology; ALZHEIMERS-DISEASE; IMPAIRMENT; PROGRESSION; DEMENTIA; VALIDATION; DECLINE;
D O I
10.1093/geronb/gbaf022
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Objectives Cognitive aging entails diverse patterns of cognitive profiles, brain imaging, and biomarkers. Yet, few studies have explored the performance of multiple clustering algorithms on a single data set. Here, we employ data-driven methods to analyze neuropsychological performance in older individuals with normal cognition (NC) and mild cognitive impairment (MCI).Methods A total of 311 older adults without dementia completed a comprehensive assessment, consisting of 17 cognitive tests and a memory complaint questionnaire. We utilized 2 clustering algorithms: nonnegative matrix factorization (NMF) and model-based clustering (MBC). Cluster characteristics were examined in demographic, clinical, and brain morphometric data.Results Both NMF and MBC uncovered two- and three-cluster solutions, with satisfactory data fit. The two-cluster profiles encompassed a cognitively intact (CI) group and a cognitively suboptimal (CS) group, distinguished by cognitive performance. The 3-cluster solutions included CI-memory proficient, CI-nonmemory proficient, and CS groups. Remarkably, patterns of cognitive heterogeneity and their association with demographic and neuroimaging variables were highly comparable across NMF and MBC. Phenotypic homogeneity improved after identifying participants with consistent and mismatched memberships from the 2 algorithms.Discussion The results indicate that 2 distinct data-driven algorithms, with different heuristics, generated comparable patterns regarding cognitive heterogeneity within NC and MCI. These findings may inform future subtyping studies in cognitive aging, where replication of stratifications found across different methods is strongly recommended.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Using data science to diagnose and characterize heterogeneity of Alzheimer's disease [J].
Ang, Ting F. A. ;
An, Ning ;
Ding, Huitong ;
Devine, Sherral ;
Auerbach, Sanford H. ;
Massaro, Joseph ;
Joshi, Prajakta ;
Liu, Xue ;
Liu, Yulin ;
Mahon, Elizabeth ;
Au, Rhoda ;
Lin, Honghuang .
ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2019, 5 (01) :264-271
[2]  
Banerjee A., 2010, Encyclopedia of machine learning, P686, DOI [10.1007/978-0-387-30164-8_554, DOI 10.1007/978-0-387-30164-8_554]
[3]   Distilling Heterogeneity of Mild Cognitive Impairment in the National Alzheimer Coordinating Center Database Using Latent Profile Analysis [J].
Blanken, Anna E. ;
Jang, Jung Yun ;
Ho, Jean K. ;
Edmonds, Emily C. ;
Han, S. Duke ;
Bangen, Katherine J. ;
Nation, Daniel A. .
JAMA NETWORK OPEN, 2020, 3 (03)
[4]  
Bouveyron C, 2019, CA ST PR MA, V50, P1, DOI 10.1017/9781108644181
[5]   Current Approaches in Computational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes [J].
Brucar, Leyla R. ;
Feczko, Eric ;
Fair, Damien A. ;
Zilverstand, Anna .
BIOLOGICAL PSYCHIATRY, 2023, 93 (08) :704-716
[6]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[7]   A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume [J].
Buckner, RL ;
Head, D ;
Parker, J ;
Fotenos, AF ;
Marcus, D ;
Morris, JC ;
Snyder, AZ .
NEUROIMAGE, 2004, 23 (02) :724-738
[8]   Cognitive aging is not created equally: differentiating unique cognitive phenotypes in "normal" adults [J].
Casaletto, Kaitlin B. ;
Elahi, Fanny M. ;
Staffaroni, Adam M. ;
Walters, Samantha ;
Contreras, Wilfredo Rivera ;
Wolf, Amy ;
Dubal, Dena ;
Miller, Bruce ;
Yaffe, Kristine ;
Kramer, Joel H. .
NEUROBIOLOGY OF AGING, 2019, 77 :13-19
[9]   Global clinical dementia rating of 0.5 in MCI masks variability related to level of function [J].
Chang, Y. -L. ;
Bondi, M. W. ;
McEvoy, L. K. ;
Fennema-Notestine, C. ;
Salmon, D. P. ;
Galasko, D. ;
Hagler, D. J., Jr. ;
Dale, A. M. .
NEUROLOGY, 2011, 76 (07) :652-659
[10]   Sex differences in item and associative memory among older adults with amnestic mild cognitive impairment [J].
Chang, Yu-Ling ;
Moscovitch, Morris .
NEUROPSYCHOLOGIA, 2022, 176