RGB-D Salient Object Detection with Cross-Modality Modulation and Selection

被引:95
作者
Li, Chongyi [1 ]
Cong, Runmin [2 ]
Piao, Yongri [3 ]
Xu, Qianqian [4 ]
Loy, Chen Change [1 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
[2] Beijing Jiaotong Univ, Beijing, Peoples R China
[3] Dalian Univ Technol, Dalian, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT VIII | 2020年 / 12353卷
基金
中国博士后科学基金;
关键词
NETWORK; FUSION;
D O I
10.1007/978-3-030-58598-3_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an effective method to progressively integrate and refine the cross-modality complementarities for RGB-D salient object detection (SOD). The proposed network mainly solves two challenging issues: 1) how to effectively integrate the complementary information from RGB image and its corresponding depth map, and 2) how to adaptively select more saliency-related features. First, we propose a cross-modality feature modulation (cmFM) module to enhance feature representations by taking the depth features as prior, which models the complementary relations of RGB-D data. Second, we propose an adaptive feature selection (AFS) module to select saliency-related features and suppress the inferior ones. The AFS module exploits multi-modality spatial feature fusion with the self-modality and cross-modality interdependencies of channel features are considered. Third, we employ a saliency-guided position-edge attention (sg-PEA) module to encourage our network to focus more on saliency-related regions. The above modules as a whole, called cmMS block, facilitates the refinement of saliency features in a coarse-to-fine fashion. Coupled with a bottom-up inference, the refined saliency features enable accurate and edge-preserving SOD. Extensive experiments demonstrate that our network outperforms state-of-the-art saliency detectors on six popular RGB-D SOD benchmarks.
引用
收藏
页码:225 / 241
页数:17
相关论文
共 48 条
[1]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[2]  
Chen H., 2019, IEEE Trans. Cybern.
[3]   Three-Stream Attention-Aware Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) :2825-2835
[4]   Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3051-3060
[5]   Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection [J].
Chen, Hao ;
Li, Youfu ;
Su, Dan .
PATTERN RECOGNITION, 2019, 86 :376-385
[6]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[7]   Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion [J].
Cong, Runmin ;
Lei, Jianjun ;
Zhang, Changqing ;
Huang, Qingming ;
Cao, Xiaochun ;
Hou, Chunping .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (06) :819-823
[8]   Going From RGB to RGBD Saliency: A Depth-Guided Transformation Model [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Hou, Junhui ;
Huang, Qingming ;
Kwong, Sam .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3627-3639
[9]   Review of Visual Saliency Detection With Comprehensive Information [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Cheng, Ming-Ming ;
Lin, Weisi ;
Huang, Qingming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) :2941-2959
[10]   A tutorial on the cross-entropy method [J].
De Boer, PT ;
Kroese, DP ;
Mannor, S ;
Rubinstein, RY .
ANNALS OF OPERATIONS RESEARCH, 2005, 134 (01) :19-67