Adversarial Semantic Data Augmentation for Human Pose Estimation

被引:38
作者
Bin, Yanrui [1 ]
Cao, Xuan [2 ]
Chen, Xinya [1 ]
Ge, Yanhao [2 ]
Tai, Ying [2 ]
Wang, Chengjie [2 ]
Li, Jilin [2 ]
Huang, Feiyue [2 ]
Gao, Changxin [1 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China
[2] Tencent Youtu Lab, Shanghai, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT XIX | 2020年 / 12364卷
基金
中国国家自然科学基金;
关键词
Pose estimation; Semantic data augmentation;
D O I
10.1007/978-3-030-58529-7_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human pose estimation is the task of localizing body keypoints from still images. The state-of-the-art methods suffer from insufficient examples of challenging cases such as symmetric appearance, heavy occlusion and nearby person. To enlarge the amounts of challenging cases, previous methods augmented images by cropping and pasting image patches with weak semantics, which leads to unrealistic appearance and limited diversity. We instead propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity. Furthermore, we propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamically predict tailored pasting configuration. Given off-the-shelf pose estimation network as discriminator, the generator seeks the most confusing transformation to increase the loss of the discriminator while the discriminator takes the generated sample as input and learns from it. The whole pipeline is optimized in an adversarial manner. State-of-the-art results are achieved on challenging benchmarks. The code has been publicly available at https://github.com/Binyr/ASDA.
引用
收藏
页码:606 / 622
页数:17
相关论文
共 33 条
[1]   2D Human Pose Estimation: New Benchmark and State of the Art Analysis [J].
Andriluka, Mykhaylo ;
Pishchulin, Leonid ;
Gehler, Peter ;
Schiele, Bernt .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3686-3693
[2]   Human Pose Estimation via Convolutional Part Heatmap Regression [J].
Bulat, Adrian ;
Tzimiropoulos, Georgios .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :717-732
[3]   Cascaded Pyramid Network for Multi-Person Pose Estimation [J].
Chen, Yilun ;
Wang, Zhicheng ;
Peng, Yuxiang ;
Zhang, Zhiqiang ;
Yu, Gang ;
Sun, Jian .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7103-7112
[4]   Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation [J].
Chen, Yu ;
Shen, Chunhua ;
Wei, Xiu-Shen ;
Liu, Lingqiao ;
Yang, Jian .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1221-1230
[5]  
Chu WQ, 2019, IEEE IMAGE PROC, P3282, DOI [10.1109/ICIP.2019.8803517, 10.1109/icip.2019.8803517]
[6]   Multi-Context Attention for Human Pose Estimation [J].
Chu, Xiao ;
Yang, Wei ;
Ouyang, Wanli ;
Ma, Cheng ;
Yuille, Alan L. ;
Wang, Xiaogang .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5669-5678
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Learning to Refine Human Pose Estimation [J].
Fieraru, Mihai ;
Khoreva, Anna ;
Pishchulin, Leonid ;
Schiele, Bernt .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :318-327
[9]   Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing [J].
Gong, Ke ;
Liang, Xiaodan ;
Zhang, Dongyu ;
Shen, Xiaohui ;
Lin, Liang .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6757-6765
[10]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672