Predicting liver metastasis in colorectal cancer patients using routine biochemical tests enhanced by machine learning

被引:0
作者
Erdat, Efe Cem [1 ]
Yalciner, Merih [1 ]
Kavak, Engin Eren [2 ]
Dilli, Ismail [2 ]
Cakmak Oksuzoglu, Omur Berna [2 ]
Akbulut, Hakan [1 ]
Utkan, Gungor [1 ]
机构
[1] Ankara Univ, Dept Med Oncol, Fac Med, Balkiraz Mh Tip Fak Cad 1, Ankara, Turkiye
[2] Ankara Etlik City Hosp, Dept Med Oncol, Ankara, Turkiye
关键词
Colorectal cancer; Liver metastasis; Artificial intelligence; Machine learning; Biochemical tests; Predictive modeling;
D O I
10.1007/s12094-025-03996-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundLiver is the most common metastatic site in colorectal cancer. This study aims to evaluate the effectiveness of different machine learning (ML) models in predicting liver metastasis in CRC patients using routine biochemical tests.Patients and methodsCross-sectional study employed various ML algorithms for predictive modeling. The study was conducted at two academic reference centers in Ankara, Turkey: a total of 810 CRC patients diagnosed between January 2010 and December 2023 were included. The training and internal validation dataset comprised 710, and external validation dataset included 100 patients. Inclusion criteria were patients aged >= 18 years with a pathological CRC diagnosis, pre-treatment biochemical tests, and known initial staging. Exclusion criteria encompassed non-adenocarcinoma histologies, incomplete biochemical data, other malignancies.ResultsLogistic regression achieved the highest internal validation AUC (0.956), accuracy (0.901), and F1 score (0.936), with a sensitivity of 0.971 and specificity of 0.703. ElasticNet and Lasso regression followed closely with AUCs of 0.958. In external validation, logistic regression maintained high performance (AUC 0.951, accuracy 0.900), while the K-nearest neighbors (KNN) model achieved perfect sensitivity (1.0) with an AUC of 0.891. The optimal predictor combination included ALP, LDH, CEA, and CA-19-9.ConclusionDifferent ML models, can effectively predict liver metastasis in CRC patients using routine biochemical tests. Further refinement and prospective clinical trials are necessary to validate and implement these predictive tools in clinical practice.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Artificial Intelligence in Decision-Making for Colorectal Cancer Treatment Strategy: An Observational Study of Implementing Watson for Oncology in a 250-Case Cohort [J].
Aikemu, Batuer ;
Xue, Pei ;
Hong, Hiju ;
Jia, Hongtao ;
Wang, Chenxing ;
Li, Shuchun ;
Huang, Ling ;
Ding, Xiaoyi ;
Zhang, Huan ;
Cai, Gang ;
Lu, Aiguo ;
Xie, Li ;
Li, Hao ;
Zheng, Minhua ;
Sun, Jing .
FRONTIERS IN ONCOLOGY, 2021, 10
[2]   Surveillance-detected hepatic metastases from colorectal cancer had a survival advantage in seven-year follow-up [J].
Child, PW ;
Yan, TD ;
Perera, DS ;
Morris, DL .
DISEASES OF THE COLON & RECTUM, 2005, 48 (04) :744-748
[3]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[4]   Imaging evaluation of the liver in oncology patients: A comparison of techniques [J].
Freitas, Patricia S. ;
Janicas, Catarina ;
Veiga, Jose ;
Matos, Antonio P. ;
Heredia, Vasco ;
Ramalho, Miguel .
WORLD JOURNAL OF HEPATOLOGY, 2021, 13 (12) :1936-1955
[5]   Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and Ferritin as Diagnostic Markers and Factors of Clinical Parameters for Colorectal Cancer [J].
Gao, Yanfeng ;
Wang, Jinping ;
Zhou, Yue ;
Sheng, Sen ;
Qian, Steven Y. ;
Huo, Xiongwei .
SCIENTIFIC REPORTS, 2018, 8
[6]   Machine learning for predicting liver and/or lung metastasis in colorectal cancer: A retrospective study based on the SEER database [J].
Guo, Zhentian ;
Zhang, Zongming ;
Liu, Limin ;
Zhao, Yue ;
Liu, Zhuo ;
Zhang, Chong ;
Qi, Hui ;
Feng, Jinqiu ;
Yang, Chunmin ;
Tai, Weiping ;
Banchini, Filippo ;
Inchingolo, Riccardo .
EJSO, 2024, 50 (07)
[7]   Application of artificial intelligence in a real-world research for predicting the risk of liver metastasis in T1 colorectal cancer [J].
Han, Tenghui ;
Zhu, Jun ;
Chen, Xiaoping ;
Chen, Rujie ;
Jiang, Yu ;
Wang, Shuai ;
Xu, Dong ;
Shen, Gang ;
Zheng, Jianyong ;
Xu, Chunsheng .
CANCER CELL INTERNATIONAL, 2022, 22 (01)
[8]   A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer [J].
Ho, Cowan ;
Zhao, Zitong ;
Chen, Xiu Fen ;
Sauer, Jan ;
Saraf, Sahil Ajit ;
Jialdasani, Rajasa ;
Taghipour, Kaveh ;
Sathe, Aneesh ;
Khor, Li-Yan ;
Lim, Kiat-Hon ;
Leow, Wei-Qiang .
SCIENTIFIC REPORTS, 2022, 12 (01)
[9]   The Economics of Personalized Therapy in Metastatic Colorectal Cancer [J].
Jain, Shweta ;
Shankaran, Veena .
CURRENT COLORECTAL CANCER REPORTS, 2016, 12 (03) :123-129
[10]   Clinical features and prognosis in hepatectomy for colorectal cancer with centrally located liver metastasis [J].
Kuo, I-Ming ;
Huang, Song-Fong ;
Chiang, Jy-Ming ;
Yeh, Chien-Yuh ;
Chan, Kun-Ming ;
Chen, Jinn-Shiun ;
Yu, Ming-Chin .
WORLD JOURNAL OF SURGICAL ONCOLOGY, 2015, 13