Enhanced performance of W-Doped TiNb2O7 anodes via low-temperature spray drying synthesis for high-power lithium-ion batteries

被引:0
作者
Li, Jiangang [1 ,3 ]
Hao, Leyan [1 ,3 ]
Han, Xianying [1 ,3 ]
Wei, Gaoyang [1 ,3 ]
Yu, Jingwen [1 ,3 ]
Zhang, Ling [1 ,3 ]
Li, Yan [1 ,3 ]
Wang, Li [2 ]
He, Xiangming [2 ]
机构
[1] Beijing Inst Petrochem Technol, Coll New Mat & Chem Engn, Beijing 102617, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Beijing Key Lab Fuels Cleaning & Adv Catalyt Emiss, Beijing 102617, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Lithium-ion battery; TiNb 2 O 7 anode material; Tungsten doping; Acidified hydrogen peroxide; Spray drying; OXIDE; LI4TI5O12; ELECTRODE;
D O I
10.1016/j.electacta.2025.146838
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The advancement of lithium-ion battery technology necessitates large-scale production of electrode materials with high energy density, power density, and safety. TiNb2O7 (TNO), a promising anode material with a Wadsley-Roth structure, offers high theoretical capacity (387.6 mAh g- 1), suitable voltage (1.65 V vs Li+/Li), and structural stability. However, the practical application of TNO is hindered by its low electronic conductivity and slow lithium-ion diffusion coefficient, necessitating performance enhancement through strategies such as nanosizing, morphology control, conductive material decoration, and ion doping. This study presents a novel precursor preparation approach using acidified hydrogen peroxide-assisted spray drying, which significantly lowers the subsequent heat treatment temperature, enabling the successful synthesis of tungsten (W6+)-doped TNO porous spherical nanomaterials at a lower calcination temperature of 750 degrees C. Optimal W6+ doping enhances the material's crystallinity, reduces the charge transfer resistance, accelerates lithium-ion transport, and markedly improves the charge-discharge performance at high rates. The prepared W0.1Ti0.9Nb2O7 material achieves a high specific capacity of 167.7 mAh g- 1 at a 20C rate and maintains a capacity retention of 93.4 % after 250 cycles at a 1C rate. This approach enables scalable production of high-performance TNO anodes.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Metal-doped TiO2 colloidal nanocrystals with broadly tunable plasmon resonance absorption [J].
Cao, Sheng ;
Zhang, Shengliang ;
Zhang, Tianran ;
Fisher, Adrian ;
Lee, Jim Yang .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (15) :4007-4014
[2]   A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards [J].
Chen, Yuqing ;
Kang, Yuqiong ;
Zhao, Yun ;
Wang, Li ;
Liu, Jilei ;
Li, Yanxi ;
Liang, Zheng ;
He, Xiangming ;
Li, Xing ;
Tavajohi, Naser ;
Li, Baohua .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :83-99
[3]   Arranging cation mixing and charge compensation of TiNb2O7 with W6+ doping for high lithium storage performance [J].
Cui, Pei ;
Li, Guo-Tai ;
Zhang, Pan-Pan ;
Wan, Tao ;
Li, Mei-Qing ;
Chen, Xue-Li ;
Zhou, Yu ;
Guo, Rui-Qiang ;
Su, Ming-Ru ;
Liu, Yun-Jian ;
Chu, De-Wei .
RARE METALS, 2023, 42 (10) :3364-3377
[4]   Influence of particle size distribution on insertion processes in composite electrodes. Potential step and EIS theory Part I. Linear diffusion [J].
Diard, JP ;
Le Gorrec, B ;
Montella, C .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :67-77
[5]   10 μm-Level TiNb2O7 Secondary Particles for Fast-Charging Lithium-Ion Batteries [J].
Fan, Jing ;
Chen, Zhengxu ;
Liang, Chennan ;
Tao, Kai ;
Zhang, Ming ;
Sun, Yongming ;
Zhan, Renming .
CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (06)
[6]   Yolk-shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors [J].
Fu, Shida ;
Yu, Qiang ;
Liu, Zhenhui ;
Hu, Ping ;
Chen, Qiang ;
Feng, Shihao ;
Mai, Liqiang ;
Zhou, Liang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11234-11240
[7]   Surface nitrided and carbon coated TiNb2O7 anode material with excellent performance for lithium-ion batteries [J].
Gao, Jinlong ;
Cheng, Xinqun ;
Lou, Shuaifeng ;
Wu, Xinzhan ;
Ding, Fei ;
Zuo, Pengjian ;
Ma, Yulin ;
Du, Chunyu ;
Gao, Yunzhi ;
Yin, Geping .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 835
[8]   High-rate lithium storage performance of TiNb2O7 anode due to single-crystal structure coupling with Cr3+-doping [J].
Gong, Shuya ;
Wang, Yue ;
Zhu, Qizhen ;
Li, Meng ;
Wen, Yuehua ;
Wang, Hong ;
Qiu, Jingyi ;
Xu, Bin .
JOURNAL OF POWER SOURCES, 2023, 564
[9]   A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage [J].
Guo, Bingkun ;
Yu, Xiqian ;
Sun, Xiao-Guang ;
Chi, Miaofang ;
Qiao, Zhen-An ;
Liu, Jue ;
Hu, Yong-Sheng ;
Yang, Xiao-Qing ;
Goodenough, John B. ;
Dai, Sheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2220-2226
[10]   Exploiting the Condensation Reactions of Acetophenone to Engineer Carbon-Encapsulated Nb2O5 Nanocrystals for High-Performance Li and Na Energy Storage Systems [J].
Han, Xianying ;
Russo, Patricia A. ;
Goubard-Bretesche, Nicolas ;
Patane, Salvatore ;
Santangelo, Saveria ;
Zhang, Rui ;
Pinna, Nicola .
ADVANCED ENERGY MATERIALS, 2019, 9 (42)