Single-atom catalysts for electrocatalytic nitrogen reduction to ammonia: A review

被引:0
作者
Wang, Qiaorui [1 ,2 ]
Liang, Dingyun [1 ]
Zhang, Zhongwen [1 ]
Yang, Yalan [1 ]
Zhang, Yunran [1 ]
Wang, Yirong [1 ]
Liu, Lei [3 ]
Jiang, Wenfeng [4 ]
Alomar, Muneerah [5 ]
Zhang, Li-Long [6 ]
机构
[1] Yanan Univ, Sch Petr Engn & Environm Engn, Yanan Key Lab Agr Solidiste Resource Utilizat, Yanan 716000, Peoples R China
[2] Rocket Force Univ Engn, Coll Missile Engn, Xian 710025, Peoples R China
[3] Hust Wuxi Res Inst, Wuxi 214174, Peoples R China
[4] Handan Vocat Coll Sci & Technol, Dept Mat, Handan 056046, Peoples R China
[5] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Phys, Riyadh 11671, Saudi Arabia
[6] Guizhou Univ, Natl Key Lab Green Pesticide, Guiyang 550025, Peoples R China
关键词
Nitrogen; Single atom catalyst; Electrolyte; Reduction; Ammonia; METAL-SUPPORT INTERACTIONS; N-2; REDUCTION; HYDROGEN EVOLUTION; AMBIENT CONDITIONS; CO OXIDATION; DESIGN; PERFORMANCE; SURFACE; MO; ELECTROLYSIS;
D O I
10.1016/j.cjsc.2025.100599
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The electrochemical nitrogen reduction reaction (eNRR) presents a sustainable alternative to the energy-intensive Haber-Bosch process for ammonia (NH3) production. This review examines the fundamental principles of eNRR, emphasizing the critical roles of proton-exchange membranes and electrolytes in facilitating efficient nitrogen (N2) reduction. Special attention is given to single-atom catalysts (SACs), highlighting their unique structural and electronic properties that contribute to enhanced catalytic performance. The discussions encompass SACs based on precious metals, non-precious metals, and non-metallic materials, delving into their synthesis methods, coordination environments, and activity in the eNRR. This review also elucidates current challenges in the field and proposes future research directions aimed at optimizing SACs design to enhance eNRR efficiency.
引用
收藏
页数:17
相关论文
共 145 条
[1]   Carbon black supported manganese phthalocyanine: Efficient electrocatalyst for nitrogen reduction to ammonia [J].
Adalder, Ashadul ;
Waghela, Santosh R. ;
Shelukar, Sachin A. ;
Mukherjee, Nilmadhab ;
Das, Swati ;
Ghorai, Uttam Kumar .
ENGINEERING REPORTS, 2024, 6 (01)
[2]   Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions [J].
Ahmed, Muhammad Ibrar ;
Hibbert, David Brynn ;
Zhao, Chuan .
GREEN ENERGY & ENVIRONMENT, 2023, 8 (06) :1567-1595
[3]   V2O3/VN electrocatalysts with coherent heterogeneous interfaces for selecting low-energy nitrogen reduction pathways [J].
An, Tae-Yong ;
Xia, Chengkai ;
Je, Minyeong ;
Lee, Hyunjung ;
Ji, Seulgi ;
Kim, Min-Cheol ;
Surendran, Subramani ;
Han, Mi-Kyung ;
Lim, Jaehyoung ;
Lee, Dong-Kyu ;
Kim, Joon Young ;
Kim, Tae-Hoon ;
Choi, Heechae ;
Kim, Jung Kyu ;
Sim, Uk .
SUSMAT, 2024, 4 (04)
[4]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[5]   Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300 °C [J].
Berg, R. W. ;
Nikiforov, A. V. ;
Petrushina, I. M. ;
Bjerrum, N. J. .
APPLIED ENERGY, 2016, 180 :269-275
[6]   Ample Lewis Acidic Sites in Mg2B2O5 Facilitate N2 Electroreduction through Bonding-Antibonding Interactions [J].
Biswas, Ashmita ;
Ghosh, Bikram ;
Sudarshan, Kathi ;
Gupta, Santosh K. ;
Dey, Ramendra Sundar .
INORGANIC CHEMISTRY, 2023, 62 (34) :14094-14102
[7]   Alteration of Electronic Band Structure via a Metal-Semiconductor Interfacial Effect Enables High Faradaic Efficiency for Electrochemical Nitrogen Fixation [J].
Biswas, Ashmita ;
Nandi, Surajit ;
Kamboj, Navpreet ;
Pan, Jaysree ;
Bhowmik, Arghya ;
Dey, Ramendra Sundar .
ACS NANO, 2021, 15 (12) :20364-20376
[8]   Interaction of Ammonia with Nafion and Electrolyte in Electrocatalytic Nitrogen Reduction Study [J].
Cai, Xiyang ;
Iriawan, Haldrian ;
Yang, Fan ;
Luo, Liuxuan ;
Shen, Shuiyun ;
Shao-Horn, Yang ;
Zhang, Junliang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (29) :6861-6866
[9]   Atomic-scale engineering of metal-oxide interfaces for advanced catalysis using atomic layer deposition [J].
Cao, Lina ;
Lu, Junling .
CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (09) :2695-2710
[10]   Temperature-Dependent Diels-Alder Cycloaddition on Polyoxometalate-Supported Single-Atom Catalysts M1/PTA (M=Mn, Fe, Co, Ru, Rh, Pd, Os, Ir and Pt; PTA=[PW1240]3-) [J].
Chen, Dandan ;
Cao, Yingying ;
Zhang, Li-Long ;
Li, Hu .
CHEMISTRYSELECT, 2021, 6 (40) :10991-10997