Progresses of theory on underground light dark matter direct detection -Cosmic-ray boosted dark matter and the Migdal effect

被引:0
作者
Qiao, Mai [1 ,2 ]
Guo, Huai-Ke [1 ]
Zhou, Yu-Feng [1 ,2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Int Ctr Theoret Phys Asia Pacific, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[3] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
关键词
dark matter; dark matter direct detection; Migdal effect; cosmic-ray boosted dark matter; SCATTERING; PARTICLES; SEARCH;
D O I
10.1360/SSPMA-2024-0485
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Currently, the dominant underground dark matter (DM) direct detection experiments in the world aim to research the property of DM interaction by probing the possible scattering signals between DM particles near the Earth and nuclei in the detectors. Since the DM particles in the galactic DM halo are mainly non-relativistic, and currently the thresholds of the detectors of DM direct detection experiments are mainly around keV, the nuclear recoil energy induced by DM particles with mass below a few GeV is too small to be observed, which becomes a bottleneck problem for underground direct detection of light DM. In recent years, a few proposals based on well-known physical processes to detect light DM with mass below GeV in traditional DM direct detection experiments have been accorded significant importance. Among them, detecting electron signals induced by the Migdal effect in the DM-nucleus scattering processes can significantly lower the detection threshold of experiments. High-energy astrophysical processes, such as cosmic-ray boosted DM (CRDM), can boost a small fraction of non-relativistic DM particles into relativistic ones. These boosted DM particles can generate nuclear recoil signals above experimental detection thresholds, which are possible to detect. By considering these physical processes with the existing experimental data, we can set limits on the scattering cross section for DM particles with mass around MeV. However, the allowed DM-nucleus scattering cross sections are large in general. For the large scattering cross section case, it is necessary to consider the Earth shielding effect for the analysis of existing experimental data from deeply underground DM direct detection experiments. This article reviews the theoretical progresses and experimental applications in the underground direct detection of light DM in recent years, focusing on the Migdal effect and CRDM, as well as the impact of the Earth shielding effect on the underground direct detection of light DM.
引用
收藏
页数:17
相关论文
共 170 条
[1]   Search for bottom-squark pair production in pp collision events at √s=13 TeV with hadronically decaying τ-leptons, b-jets, and missing transverse momentum using the ATLAS detector [J].
Aad, G. ;
Abbott, B. ;
Abbott, D. C. ;
Abud, A. Abed ;
Abeling, K. ;
Abhayasinghe, D. K. ;
Abidi, S. H. ;
AbouZeid, O. S. ;
Abraham, N. L. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Achkar, B. ;
Adam, L. ;
Bourdarios, C. Adam ;
Adamczyk, L. ;
Adamek, L. ;
Adelman, J. ;
Adiguzel, A. ;
Adorni, S. ;
Adye, T. ;
Affolder, A. A. ;
Afik, Y. ;
Agapopoulou, C. ;
Agaras, M. N. ;
Aggarwal, A. ;
Agheorghiesei, C. ;
Aguilar-Saavedra, J. A. ;
Ahmad, A. ;
Ahmadov, F. ;
Ahmed, W. S. ;
Ai, X. ;
Aielli, G. ;
Akatsuka, S. ;
Akbiyik, M. ;
Akesson, T. P. A. ;
Akilli, E. ;
Akimov, A., V ;
Al Khoury, K. ;
Alberghi, G. L. ;
Albert, J. ;
Verzini, M. J. Alconada ;
Alderweireldt, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexopoulos, T. ;
Alfonsi, A. ;
Alfonsi, F. .
PHYSICAL REVIEW D, 2021, 104 (03)
[2]   Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdelalim, A. A. ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, A. ;
AbouZeid, S. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Allbrooke, B. M. A. ;
Allport, P. P. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04)
[3]  
Aad G, 2008, JOURNAL OF INSTRUMENTATION, V3, DOI [DOI 10.1088/1748-0221/3/08/S08003, 10.1088/1748-0221/3/08/S08003]
[4]  
Aalbers J, 2024, Arxiv, DOI arXiv:2410.17036
[5]   Search for new physics in low-energy electron recoils from the first LZ exposure [J].
Aalbers, J. ;
Akerib, D. S. ;
Al Musalhi, A. K. ;
Alder, F. ;
Amarasinghe, C. S. ;
Ames, A. ;
Anderson, T. J. ;
Angelides, N. ;
Araujo, H. M. ;
Armstrong, J. E. ;
Arthurs, M. ;
Baker, A. ;
Balashov, S. ;
Bang, J. ;
Bargemann, J. W. ;
Baxter, A. ;
Beattie, K. ;
Beltrame, P. ;
Benson, T. ;
Bhatti, A. ;
Biekert, A. ;
Biesiadzinski, T. P. ;
Birch, H. J. ;
Blockinger, G. M. ;
Boxer, B. ;
Brew, C. A. J. ;
Bras, P. ;
Burdin, S. ;
Buuck, M. ;
Carmona-Benitez, M. C. ;
Chan, C. ;
Chawla, A. ;
Chen, H. ;
Cherwinka, J. J. ;
Chott, N. I. ;
Converse, M. V. ;
Cottle, A. ;
Cox, G. ;
Curran, D. ;
Dahl, C. E. ;
David, A. ;
Delgaudio, J. ;
Dey, S. ;
de Viveiros, L. ;
Ding, C. ;
Dobson, J. E. Y. ;
Druszkiewicz, E. ;
Eriksen, S. R. ;
Fan, A. ;
Fearon, N. M. .
PHYSICAL REVIEW D, 2023, 108 (07)
[6]   Background determination for the LUX-ZEPLIN dark matter experiment [J].
Aalbers, J. ;
Akerib, D. S. ;
Al Musalhi, A. K. ;
Alder, F. ;
Alsum, S. K. ;
Amarasinghe, C. S. ;
Ames, A. ;
Anderson, T. J. ;
Angelides, N. ;
Araujo, H. M. ;
Armstrong, J. E. ;
Arthurs, M. ;
Baker, A. ;
Bang, J. ;
Bargemann, J. W. ;
Baxter, A. ;
Beattie, K. ;
Beltrame, P. ;
Bernard, E. P. ;
Bhatti, A. ;
Biekert, A. ;
Biesiadzinski, T. P. ;
Birch, H. J. ;
Blockinger, G. M. ;
Boxer, B. ;
Brew, C. A. J. ;
Bras, P. ;
Burdin, S. ;
Buuck, M. ;
Cabrita, R. ;
Carmona-Benitez, M. C. ;
Chan, C. ;
Chawla, A. ;
Chen, H. ;
Chiang, A. P. S. ;
Chott, N. I. ;
V. Converse, M. ;
Cottle, A. ;
Cox, G. ;
Creaner, O. ;
Dahl, C. E. ;
David, A. ;
Dey, S. ;
de Viveiros, L. ;
Ding, C. ;
Dobson, J. E. Y. ;
Druszkiewicz, E. ;
Eriksen, S. R. ;
Fan, A. ;
Fearon, N. M. .
PHYSICAL REVIEW D, 2023, 108 (01)
[7]   First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment [J].
Aalbers, J. ;
Akerib, D. S. ;
Akerlof, C. W. ;
Musalhi, A. K. Al ;
Alder, F. ;
Alqahtani, A. ;
Alsum, S. K. ;
Amarasinghe, C. S. ;
Ames, A. ;
Anderson, T. J. ;
Angelides, N. ;
Araujo, H. M. ;
Armstrong, J. E. ;
Arthurs, M. ;
Azadi, S. ;
Bailey, A. J. ;
Baker, A. ;
Balajthy, J. ;
Balashov, S. ;
Bang, J. ;
Bargemann, J. W. ;
Barry, M. J. ;
Barthel, J. ;
Bauer, D. ;
Baxter, A. ;
Beattie, K. ;
Belle, J. ;
Beltrame, P. ;
Bensinger, J. ;
Benson, T. ;
Bernard, E. P. ;
Bhatti, A. ;
Biekert, A. ;
Biesiadzinski, T. P. ;
Birch, H. J. ;
Birrittella, B. ;
Blockinger, G. M. ;
Boast, K. E. ;
Boxer, B. ;
Bramante, R. ;
Brew, C. A. J. ;
Bras, P. ;
Buckley, J. H. ;
V. Bugaev, V. ;
Burdin, S. ;
Busenitz, J. K. ;
Buuck, M. ;
Cabrita, R. ;
Carels, C. ;
Carlsmith, D. L. .
PHYSICAL REVIEW LETTERS, 2023, 131 (04)
[8]  
Aalbers J, arXiv
[9]   Astrophysical and dark matter interpretations of extended gamma-ray emission from the Galactic Center [J].
Abazajian, Kevork N. ;
Canac, Nicolas ;
Horiuchi, Shunsaku ;
Kaplinghat, Manoj .
PHYSICAL REVIEW D, 2014, 90 (02)
[10]   First results from the CRESST-III low-mass dark matter program [J].
Abdelhameed, A. H. ;
Angloher, G. ;
Bauer, P. ;
Bento, A. ;
Bertoldo, E. ;
Bucci, C. ;
Canonica, L. ;
D'Addabbo, A. ;
Defay, X. ;
Di Lorenzo, S. ;
Erb, A. ;
Feilitzsch, F. v ;
Fichtinger, S. ;
Iachellini, N. Ferreiro ;
Fuss, A. ;
Gorla, P. ;
Hauff, D. ;
Jochum, J. ;
Kinast, A. ;
Kluck, H. ;
Kraus, H. ;
Langenkaemper, A. ;
Mancuso, M. ;
Mokina, V ;
Mondragon, E. ;
Muenster, A. ;
Olmi, M. ;
Ortmann, T. ;
Pagliarone, C. ;
Pattavina, L. ;
Petricca, F. ;
Potzel, W. ;
Proebst, F. ;
Reindl, F. ;
Rothe, J. ;
Schaffner, K. ;
Schieck, J. ;
Schipperges, V ;
Schmiedmayer, D. ;
Schoenert, S. ;
Schwertner, C. ;
Stahlberg, M. ;
Stodolsky, L. ;
Strandhagen, C. ;
Strauss, R. ;
Tuerkoglu, C. ;
Usherov, I ;
Willers, M. ;
Zema, V .
PHYSICAL REVIEW D, 2019, 100 (10)