Using graph machine learning to identify functioning in patients with low back pain in terms of ICF

被引:0
作者
Nieminen, Linda [1 ,2 ,6 ]
Ketamo, Harri [3 ]
Vuori, Jari [4 ,5 ]
Kankaanpaa, Markku [1 ,2 ]
机构
[1] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[2] Tampere Univ Hosp, Dept Rehabil & Psychosocial Support, Tampere, Finland
[3] HeadAI Ltd, Pori, Finland
[4] Arizona State Univ, Ctr Org Res & Design, Phoenix, AZ USA
[5] Tampere Univ, Fac Business & Management, Tampere, Finland
[6] Wellbeing Serv Cty Pirkanmaa, Dept Primary Hlth Care, Outpatient Rehabil Serv, Hatanpaankatu 24, Tampere 33900, Finland
关键词
Artificial intelligence; Functioning; Graph machine learning; ICF; Low back pain;
D O I
10.1038/s41598-025-06429-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a comprehensive perspective on functioning is useful in patient assessments, the WHO developed the International Classification of Functioning, Disability, and Health (ICF) to provide a standardized terminology and framework for describing and classifying human functioning. However, its complex structure poses a problem for implementation as part of clinical practice.The aim of this study was to test a graph machine learning engine, Headai Graphmind, to recognize ICF codes from electronic health records written in Finnish. A dataset of 93 patients aged 18 to 65 years with chronic low back pain was collected. Headai Graphmind was then tested for its ability to match free text with ICF codes on a sample of 20 patients. The results were compared against the findings of a domain expert. Headai Graphmind achieved 0.95 precision, 0.83 recall, and 0.89 F1 score.The application found 112 distinct ICF codes compared to 119 codes found by the domain expert. Headai Graphmind has the capability to recognize ICF codes from the electronic health records of patients with chronic low back pain. The method could be helpful when implementing the ICF classification in clinical practice, and enable retrospective coding of medical information for further use.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Low back pain: a call for action [J].
Buchbinder, Rachelle ;
van Tulder, Maurits ;
Oberg, Birgitta ;
Costa, Luciola Menezes ;
Woolf, Anthony ;
Schoene, Mark ;
Croft, Peter .
LANCET, 2018, 391 (10137) :2384-2388
[2]   Icf linking rules:: An update based on lessons learned [J].
Cieza, A ;
Geyh, S ;
Chatterji, S ;
Kostanjsek, N ;
Üstün, B ;
Stucki, G .
JOURNAL OF REHABILITATION MEDICINE, 2005, 37 (04) :212-218
[3]   ICF core sets for low back pain [J].
Cieza, A ;
Stucki, G ;
Weigl, M ;
Disler, P ;
Jäckel, W ;
van der Linden, S ;
Kostanjsek, N ;
de Bie, R .
JOURNAL OF REHABILITATION MEDICINE, 2004, 36 :69-74
[4]  
Finnish institute for health and welfare, 2018, ICF browser Finnish language. ICF-koodit sahkoinen kirja
[5]   Prevention and treatment of low back pain: evidence, challenges, and promising directions [J].
Foster, Nadine E. ;
Anema, Johannes R. ;
Cherkin, Dan ;
Chou, Roger ;
Cohen, Steven P. ;
Gross, Douglas P. ;
Ferreira, Paulo H. ;
Fritz, Julie M. ;
Koes, Bart W. ;
Peul, Wilco ;
Turner, Judith A. ;
Maher, Chris G. .
LANCET, 2018, 391 (10137) :2368-2383
[6]   The FBE development project: toward flexible electronic standards-based bio-psycho-social individual records [J].
Frattura, Lucilla ;
Simoncello, Andrea ;
Bassi, Giovanni ;
Soranzio, Andrea ;
Terreni, Stefano ;
Sbroiavacca, Fulvio .
QUALITY OF LIFE THROUGH QUALITY OF INFORMATION, 2012, 180 :651-655
[7]   The Rising Prevalence of Chronic Low Back Pain [J].
Freburger, Janet K. ;
Holmes, George M. ;
Agans, Robert P. ;
Jackman, Anne M. ;
Darter, Jane D. ;
Wallace, Andrea S. ;
Castel, Liana D. ;
Kalsbeek, William D. ;
Carey, Timothy S. .
ARCHIVES OF INTERNAL MEDICINE, 2009, 169 (03) :251-258
[8]   Utilizing graph machine learning within drug discovery and development [J].
Gaudelet, Thomas ;
Day, Ben ;
Jamasb, Arian R. ;
Soman, Jyothish ;
Regep, Cristian ;
Liu, Gertrude ;
Hayter, Jeremy B. R. ;
Vickers, Richard ;
Roberts, Charles ;
Tang, Jian ;
Roblin, David ;
Blundell, Tom L. ;
Bronstein, Michael M. ;
Taylor-King, Jake P. .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[9]   Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J].
Vos, Theo ;
Abajobir, Amanuel Alemu ;
Abbafati, Cristiana ;
Abbas, Kaja M. ;
Abate, Kalkidan Hassen ;
Abd-Allah, Foad ;
Abdulle, Abdishakur M. ;
Abebo, Teshome Abuka ;
Abera, Semaw Ferede ;
Aboyans, Victor ;
Abu-Raddad, Laith J. ;
Ackerman, Ilana N. ;
Adamu, Abdu Abdullahi ;
Adetokunboh, Olatunji ;
Afarideh, Mohsen ;
Afshin, Ashkan ;
Agarwal, Sanjay Kumar ;
Aggarwal, Rakesh ;
Agrawal, Anurag ;
Agrawal, Sutapa ;
Kiadaliri, Aliasghar Ahmad ;
Ahmadieh, Hamid ;
Ahmed, Muktar Beshir ;
Aichour, Amani Nidhal ;
Aichour, Ibtihel ;
Aichour, Miloud Taki Eddine ;
Aiyar, Sneha ;
Akinyemi, Rufus Olusola ;
Akseer, Nadia ;
Al Lami, Faris Hasan ;
Alahdab, Fares ;
Al-Aly, Ziyad ;
Alam, Khurshid ;
Alam, Noore ;
Alam, Tahiya ;
Alasfoor, Deena ;
Alene, Kefyalew Addis ;
Ali, Raghib ;
Alizadeh-Navaei, Reza ;
Alkerwi, Ala'a ;
Alla, Francois ;
Allebeck, Peter ;
Allen, Christine ;
Al-Maskari, Fatma ;
Al-Raddadi, Rajaa ;
Alsharif, Ubai ;
Alsowaidi, Shirina ;
Altirkawi, Khalid A. ;
Amare, Azmeraw T. ;
Amini, Erfan .
LANCET, 2017, 390 (10100) :1211-1259
[10]  
Geiβ S., 2021, Comput. Communication Res, V3, P61, DOI DOI 10.5117/CCR2021.1.003.GEIS