Variational quantum eigensolvers with quantum Gaussian filters for solving ground-state problems in quantum many-body systems

被引:0
作者
Liu, Yihao [1 ,2 ,3 ]
He, Min-Quan [1 ,2 ,3 ,4 ]
Wang, Z. D. [1 ,2 ,3 ,5 ]
机构
[1] Univ Hong Kong, Dept Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Pokfulam Rd, Hong Kong, Peoples R China
[2] Univ Hong Kong, HK Inst Quantum Sci & Technol, Pokfulam Rd, Hong Kong, Peoples R China
[3] Quantum Sci Ctr Guangdong Hong Kong Macau Greater, Hong Kong Branch, Shenzhen, Peoples R China
[4] Univ Hong Kong, Room 525,Chong Yuet Ming Phys Bldg,Pokfulam Rd, Hong Kong, Peoples R China
[5] Univ Hong Kong, Room 528,Chong Yuet Ming Phys Bldg,Pokfulam Rd, Hong Kong, Peoples R China
关键词
Quantum simulation; Quantum algorithms; Variational quantum eigensolver; Quantum many-body problem; ALGORITHM;
D O I
10.1016/j.physleta.2025.130766
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel quantum algorithm for approximating the ground-state in quantum many-body systems, particularly suited for Noisy Intermediate-Scale Quantum (NISQ) devices. Our approach integrates Variational Quantum Eigensolvers (VQE) with Quantum Gaussian Filters (QGF), utilizing an iterative methodology that discretizes the application of the QGF operator into small optimized steps through VQE. Demonstrated on the Transverse Field Ising models, our method shows improved convergence speed and accuracy, particularly under noisy conditions, compared to conventional VQE methods. This advancement highlights the potential of our algorithm in effectively addressing complex quantum simulations, marking a significant stride in quantum computing applications within the NISQ era.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]  
Aharonov D., 2006, STOC'06. Proceedings of the 38th Annual ACM Symposium on Theory of Computing, P427, DOI 10.1145/1132516.1132579
[3]   Quadratic Speedup for Spatial Search by Continuous-Time Quantum Walk [J].
Apers, Simon ;
Chakraborty, Shantanav ;
Novo, Leonardo ;
Roland, Jeremie .
PHYSICAL REVIEW LETTERS, 2022, 129 (16)
[4]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[5]   Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation [J].
Babbush, Ryan ;
McClean, Jarrod ;
Wecker, Dave ;
Aspuru-Guzik, Alan ;
Wiebe, Nathan .
PHYSICAL REVIEW A, 2015, 91 (02)
[6]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[7]   Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation [J].
Bespalova, Tatiana A. ;
Kyriienko, Oleksandr .
PRX QUANTUM, 2021, 2 (03)
[8]   Scaling of variational quantum circuit depth for condensed matter systems [J].
Bravo-Prieto, Carlos ;
Lumbreras-Zarapico, Josep ;
Tagliacozzo, Luca ;
Latorre, Jose, I .
QUANTUM, 2020, 4
[9]   ON THE EQUIVALENCE OF TIME-DEPENDENT VARIATIONAL-PRINCIPLES [J].
BROECKHOVE, J ;
LATHOUWERS, L ;
KESTELOOT, E ;
VANLEUVEN, P .
CHEMICAL PHYSICS LETTERS, 1988, 149 (5-6) :547-550
[10]  
Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI [10.1098/rspa.1998.0164, 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO