DEEP LEARNING APPLICATION FOR FRACTURE SEGMENTATION OVER OUTCROP IMAGES FROM UAV-BASED DIGITAL PHOTOGRAMMETRY

被引:8
作者
Marques, Ademir, Jr. [1 ,2 ]
Racolte, Graciela [1 ,2 ]
de Souza, Eniuce Menezes [3 ]
Domingos, Hiduino Venancio [2 ]
Horota, Rafael Kenji [1 ]
Motta, Joao Gabriel [1 ,2 ]
Zanotta, Daniel Capella [1 ,2 ]
Cazarin, Caroline Lessio [4 ]
Gonzaga, Luiz, Jr. [1 ,2 ]
Veronez, Mauricio Roberto [1 ,2 ]
机构
[1] UNISINOS Sao Leopoldo, Vizlab, X Real & Geoinformat Lab, Sao Leopoldo, RS, Brazil
[2] Vale Rio Sinos Univ, Grad Program Appl Comp, Sao Leopoldo, RS, Brazil
[3] Univ Estadual Maringa, Dept Stat, Maringa, Parana, Brazil
[4] CENPES PETROBRAS, Rio De Janeiro, Brazil
来源
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS | 2021年
关键词
Fracture detection; CNN; Unet; Segnet; UAV; Photogrammetry; Segmentation; WORKFLOW;
D O I
10.1109/IGARSS47720.2021.9553232
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Fractures affect the intrinsic properties of permeability and porosity of reservoir geobodies, making its network characterization an important task for fluid flow modeling. Direct acquisition of data on reservoirs is labor-intensive and generally produces sparse information. Thus, the study of analogue outcrops with similar characteristics is often carried out by using unmanned aerial vehicle image acquisition and digital photogrammetry. However, the accurate automatic recognition of the fractures network over the outcrop images remains a challenge. Image segmentation methods based on convolution neural networks (CNNs) were successfully applied in medicine, biology, and other areas, however, not yet in geological fracture detection. This work proposes the validation of two popular CNNs - Segnet and Unet - for pixel-to-pixel segmentation targeting fracture detection. Initial results showed acceptable scores of the metrics mean intersection over union (mIoU) and dice intersection (F1) in both CNNs.
引用
收藏
页码:4692 / 4695
页数:4
相关论文
共 20 条
[1]   An ensemble architecture of deep convolutional Segnet and Unet networks for building semantic segmentation from high-resolution aerial images [J].
Abdollahi, Abolfazl ;
Pradhan, Biswajeet ;
Alamri, Abdullah M. .
GEOCARTO INTERNATIONAL, 2022, 37 (12) :3355-3370
[2]   How do we see fractures? Quantifying subjective bias in fracture data collection [J].
Andrews, Billy J. ;
Roberts, Jennifer J. ;
Shipton, Zoe K. ;
Bigi, Sabina ;
Tartarello, M. Chiara ;
Johnson, Gareth .
SOLID EARTH, 2019, 10 (02) :487-516
[3]  
[Anonymous], 2017, DEEP LEARNING KERAS
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Bertotti Giovanni, 2019, FRACTURE PATTERNS JA
[6]   An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks [J].
Bisdom, K. ;
Nick, H. M. ;
Bertotti, G. .
COMPUTERS & GEOSCIENCES, 2017, 103 :21-35
[7]  
Bjorlykke K, 2010, PETROLEUM GEOSCIENCE: FROM SEDIMENTARY ENVIRONMENTS TO ROCK PHYSICS, P1, DOI 10.1007/978-3-642-02332-3_1
[8]   Printgrammetry-3-D Model Acquisition Methodology From Google Earth Imagery Data [J].
Horota, Rafael Kenji ;
Aires, Alysson Soares ;
Marques, Ademir, Jr. ;
Rossa, Pedro ;
de Souza, Eniuce Menezes ;
Gonzaga, Luiz, Jr. ;
Veronez, Mauricio Roberto .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :2819-2830
[9]   Fracture characterization in Upper Permian carbonates in Spitsbergen: A workflow from digital outcrop to geo-model [J].
Larssen, Kristine ;
Senger, Kim ;
Grundvag, Sten-Andreas .
MARINE AND PETROLEUM GEOLOGY, 2020, 122
[10]   Virtual and digital outcrops in the petroleum industry: A systematic review [J].
Marques Jr, Ademir ;
Horota, Rafael Kenji ;
de Souza, Eniuce Menezes ;
Kupssinsku, Lucas ;
Rossa, Pedro ;
Aires, Alysson Soares ;
Bachi, Leonardo ;
Veronez, Mauricio Roberto ;
Gonzaga Jr, Luiz ;
Cazarin, Caroline Lessio .
EARTH-SCIENCE REVIEWS, 2020, 208