Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval

被引:113
作者
Brown, Andrew [1 ]
Xie, Weidi [1 ]
Kalogeiton, Vicky [1 ]
Zisserman, Andrew [1 ]
机构
[1] Univ Oxford, Visual Geometry Grp, Oxford, England
来源
COMPUTER VISION - ECCV 2020, PT IX | 2020年 / 12354卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-58545-7_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimising a ranking-based metric, such as Average Precision (AP), is notoriously challenging due to the fact that it is non-differentiable, and hence cannot be optimised directly using gradient-descent methods. To this end, we introduce an objective that optimises instead a smoothed approximation of AP, coined Smooth-AP. Smooth-AP is a plug-and-play objective function that allows for end-to-end training of deep networks with a simple and elegant implementation. We also present an analysis for why directly optimising the ranking based metric of AP offers benefits over other deep metric learning losses. We apply Smooth-AP to standard retrieval benchmarks: Stanford Online products and VehicleID, and also evaluate on larger-scale datasets: INaturalist for fine-grained category retrieval, and VGGFace2 and IJB-C for face retrieval. In all cases, we improve the performance over the state-of-the-art, especially for larger-scale datasets, thus demonstrating the effectiveness and scalability of Smooth-AP to real-world scenarios.
引用
收藏
页码:677 / 694
页数:18
相关论文
共 74 条
[61]   Stochastic Class-based Hard Example Mining for Deep Metric Learning [J].
Suh, Yumin ;
Han, Bohyung ;
Kim, Wonsik ;
Lee, Kyoung Mu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7244-7252
[62]  
Ustinova E, 2016, ADV NEUR IN, V29
[63]   The iNaturalist Species Classification and Detection Dataset [J].
Van Horn, Grant ;
Mac Aodha, Oisin ;
Song, Yang ;
Cui, Yin ;
Sun, Chen ;
Shepard, Alex ;
Adam, Hartwig ;
Perona, Pietro ;
Belongie, Serge .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8769-8778
[64]  
Vlastelica M., 2020, Differentiation of blackbox combinatorial solvers
[65]  
Wah C, 2011, CALTECH UCSD BIRDS 2
[66]   Learning Fine-grained Image Similarity with Deep Ranking [J].
Wang, Jiang ;
Song, Yang ;
Leung, Thomas ;
Rosenberg, Chuck ;
Wang, Jingbin ;
Philbin, James ;
Chen, Bo ;
Wu, Ying .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1386-1393
[67]  
Wang X., 2019, P CVPR
[68]   Cross-Batch Memory for Embedding Learning [J].
Wang, Xun ;
Zhang, Haozhi ;
Huang, Weilin ;
Scott, Matthew R. .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6387-6396
[69]   Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning [J].
Wang, Xun ;
Han, Xintong ;
Huang, Weiling ;
Dong, Dengke ;
Scott, Matthew R. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5017-5025
[70]   Sampling Matters in Deep Embedding Learning [J].
Wu, Chao-Yuan ;
Manmatha, R. ;
Smola, Alexander J. ;
Krahenbuhl, Philipp .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2859-2867