Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval

被引:113
作者
Brown, Andrew [1 ]
Xie, Weidi [1 ]
Kalogeiton, Vicky [1 ]
Zisserman, Andrew [1 ]
机构
[1] Univ Oxford, Visual Geometry Grp, Oxford, England
来源
COMPUTER VISION - ECCV 2020, PT IX | 2020年 / 12354卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-58545-7_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimising a ranking-based metric, such as Average Precision (AP), is notoriously challenging due to the fact that it is non-differentiable, and hence cannot be optimised directly using gradient-descent methods. To this end, we introduce an objective that optimises instead a smoothed approximation of AP, coined Smooth-AP. Smooth-AP is a plug-and-play objective function that allows for end-to-end training of deep networks with a simple and elegant implementation. We also present an analysis for why directly optimising the ranking based metric of AP offers benefits over other deep metric learning losses. We apply Smooth-AP to standard retrieval benchmarks: Stanford Online products and VehicleID, and also evaluate on larger-scale datasets: INaturalist for fine-grained category retrieval, and VGGFace2 and IJB-C for face retrieval. In all cases, we improve the performance over the state-of-the-art, especially for larger-scale datasets, thus demonstrating the effectiveness and scalability of Smooth-AP to real-world scenarios.
引用
收藏
页码:677 / 694
页数:18
相关论文
共 74 条
[51]   Optimizing Rank-based Metrics with Blackbox Differentiation [J].
Rolinek, Michal ;
Musil, Vit ;
Paulus, Anselm ;
Vlastelica, Marin ;
Michaelis, Claudio ;
Martius, Georg .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :7617-7627
[52]  
Roth K., 2019, Deep metric learning baselines
[53]   MIC: Mining Interclass Characteristics for Improved Metric Learning [J].
Roth, Karsten ;
Brattoli, Biagio ;
Ommer, Bjoern .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :7999-8008
[54]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[55]   Divide and Conquer the Embedding Space for Metric Learning [J].
Sanakoyeu, Artsiom ;
Tschernezki, Vadim ;
Buechler, Uta ;
Ommer, Bjoern .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :471-480
[56]  
Schmid C., 2011, IEEE PAMI
[57]  
Schroff F, 2015, PROC CVPR IEEE, P815, DOI 10.1109/CVPR.2015.7298682
[58]   Video Google: A text retrieval approach to object matching in videos [J].
Sivic, J ;
Zisserman, A .
NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, :1470-+
[59]   Deep Metric Learning via Facility Location [J].
Song, Hyun Oh ;
Jegelka, Stefanie ;
Rathod, Vivek ;
Murphy, Kevin .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2206-2214
[60]   Deep Metric Learning via Lifted Structured Feature Embedding [J].
Song, Hyun Oh ;
Xiang, Yu ;
Jegelka, Stefanie ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4004-4012