Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval

被引:113
作者
Brown, Andrew [1 ]
Xie, Weidi [1 ]
Kalogeiton, Vicky [1 ]
Zisserman, Andrew [1 ]
机构
[1] Univ Oxford, Visual Geometry Grp, Oxford, England
来源
COMPUTER VISION - ECCV 2020, PT IX | 2020年 / 12354卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-58545-7_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimising a ranking-based metric, such as Average Precision (AP), is notoriously challenging due to the fact that it is non-differentiable, and hence cannot be optimised directly using gradient-descent methods. To this end, we introduce an objective that optimises instead a smoothed approximation of AP, coined Smooth-AP. Smooth-AP is a plug-and-play objective function that allows for end-to-end training of deep networks with a simple and elegant implementation. We also present an analysis for why directly optimising the ranking based metric of AP offers benefits over other deep metric learning losses. We apply Smooth-AP to standard retrieval benchmarks: Stanford Online products and VehicleID, and also evaluate on larger-scale datasets: INaturalist for fine-grained category retrieval, and VGGFace2 and IJB-C for face retrieval. In all cases, we improve the performance over the state-of-the-art, especially for larger-scale datasets, thus demonstrating the effectiveness and scalability of Smooth-AP to real-world scenarios.
引用
收藏
页码:677 / 694
页数:18
相关论文
共 74 条
[11]  
Cao Z., 2007, P 24 INT C MACHINE L, P129
[12]  
Chapelle O., 2007, NEURIPS
[13]  
Chen H., 2019, P BMVC
[14]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[15]   Total recall: Automatic query expansion with a generative feature model for object retrieval [J].
Chum, Ondrej ;
Philbin, James ;
Sivic, Josef ;
Isard, Michael ;
Zisserman, Andrew .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :496-+
[16]  
Chum O, 2011, PROC CVPR IEEE, P889, DOI 10.1109/CVPR.2011.5995601
[17]   ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J].
Deng, Jiankang ;
Guo, Jia ;
Xue, Niannan ;
Zafeiriou, Stefanos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4685-4694
[18]  
Duan Y., 2018, P CVPR
[19]   SoDeep: a Sorting Deep net to learn ranking loss surrogates [J].
Engilberge, Martin ;
Chevallier, Louis ;
Perez, Patrick ;
Cord, Matthieu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10784-10793
[20]   Deep Metric Learning with Hierarchical Triplet Loss [J].
Ge, Weifeng ;
Huang, Weilin ;
Dong, Dengke ;
Scott, Matthew R. .
COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 :272-288