Stability in cubic metric-affine gravity

被引:0
作者
Bahamonde, Sebastian [1 ,2 ]
Valcarcel, Jorge Gigante [3 ]
机构
[1] Univ Tokyo, Inst Adv Study UTIAS, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[2] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Cosmol Grav & Astroparticle Phys Grp, Daejeon 34126, South Korea
[3] Inst Basic Sci IBS, Ctr Geometry & Phys, Pohang 37673, South Korea
关键词
POINCARE GAUGE-THEORY; GHOST-FREE; HAMILTONIAN ANALYSIS; APPROXIMATION; LAGRANGIANS; IDENTITIES; CURVATURE; TORSION; TENSOR; MODES;
D O I
10.1103/PhysRevD.111.084058
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the stability issue of the vector and axial modes of the torsion and nonmetricity tensors around general backgrounds in the framework of cubic metric-affine gravity. We show that the presence of cubic order invariants defined from the curvature, torsion, and nonmetricity tensors allow the cancellation of the well-known instabilities arising in the vector and axial sectors of quadratic metric-affine gravity. For the resulting theory, we also obtain Reissner-Nordstr & ouml;m-like black hole solutions with dynamical torsion and nonmetricity, which in general include massive tensor modes for these quantities, thus avoiding further no-go theorems that potentially prevent a consistent interaction of massless higher spin fields in the quantum regime.
引用
收藏
页数:58
相关论文
共 43 条
[1]   Cosmological perturbation theory in metric-affine gravity [J].
Aoki, Katsuki ;
Bahamonde, Sebastian ;
Valcarcel, Jorge Gigante ;
Gorji, Mohammad Ali .
PHYSICAL REVIEW D, 2024, 110 (02)
[2]   Stability of Poincare<acute accent> gauge theory with cubic order invariants [J].
Bahamonde, Sebastian ;
Valcarcel, Jorge Gigante .
PHYSICAL REVIEW D, 2024, 109 (10)
[3]   New black hole solutions with a dynamical traceless nonmetricity tensor in Metric-Affine Gravity [J].
Bahamonde, Sebastian ;
Chevrier, Johann ;
Valcarcel, Jorge Gigante .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (02)
[4]   GHOST-FREE AND TACHYON-FREE GAUGE-INVARIANT, POINCARE, AFFINE AND PROJECTIVE LAGRANGIANS [J].
BAIKOV, P ;
HAYASHI, M ;
NELIPA, N ;
OSTAPCHENKO, S .
GENERAL RELATIVITY AND GRAVITATION, 1992, 24 (08) :867-880
[5]   Metric-Affine Gravity as an effective field theory [J].
Baldazzi, A. ;
Melichev, O. ;
Percacci, R. .
ANNALS OF PHYSICS, 2022, 438
[6]  
Barker W, 2024, Arxiv, DOI arXiv:2402.14917
[7]   ZERO-MASS NORMAL-MODES IN LINEARIZED POINCARE GAUGE-THEORIES [J].
BATTITI, R ;
TOLLER, M .
LETTERE AL NUOVO CIMENTO, 1985, 44 (01) :35-39
[8]   Revisiting the stability of quadratic Poincare gauge gravity [J].
Beltran Jimenez, Jose ;
Torralba, Francisco Jose Maldonado .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (07)
[9]   Instabilities in metric-affine theories of gravity with higher order curvature terms [J].
Beltran Jimenez, Jose ;
Delhom, Adria .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (06)
[10]   Ghosts in metric-affine higher order curvature gravity [J].
Beltran Jimenez, Jose ;
Delhom, Adria .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (08)