NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing

被引:132
作者
Huang, Xin [1 ]
Ge, Zheng [1 ]
Jie, Zequn [2 ]
Yoshie, Osamu [1 ]
机构
[1] Waseda Univ, Tokyo, Japan
[2] Tencent AI Lab, Shenzhen, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.01076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although significant progress has been made in pedestrian detection recently, pedestrian detection in crowded scenes is still challenging. The heavy occlusion between pedestrians imposes great challenges to the standard Non-Maximum Suppression (NMS). A relative low threshold of intersection over union IoU) leads to missing highly overlapped pedestrians, while a higher one brings in plenty of false positives. To avoid such a dilemma, this paper proposes a novel Representative Region NMS ((RNMS)-N-2) approach leveraging the less occluded visible parts, effectively removing the redundant boxes without bringing in many false positives. To acquire the visible parts, a novel Paired-Box Model (PBM) is proposed to simultaneously predict the full and visible boxes of a pedestrian. The full and visible boxes constitute a pair serving as the sample unit of the model, thus guaranteeing a strong correspondence between the two boxes throughout the detection pipeline. Moreover, convenient feature integration of the two boxes is allowed for the better performance on both full and visible pedestrian detection tasks. Experiments on the challenging CrowdHuman [20] and CityPersons [24] benchmarks sufficiently validate the effectiveness of the proposed approach on pedestrian detection in the crowded situation.
引用
收藏
页码:10747 / 10756
页数:10
相关论文
共 28 条
[1]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[2]   Beyond triplet loss: a deep quadruplet network for person re-identification [J].
Chen, Weihua ;
Chen, Xiaotang ;
Zhang, Jianguo ;
Huang, Kaiqi .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1320-1329
[3]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[4]   Pedestrian Detection: An Evaluation of the State of the Art [J].
Dollar, Piotr ;
Wojek, Christian ;
Schiele, Bernt ;
Perona, Pietro .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (04) :743-761
[5]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[6]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[9]  
Joseph RK, 2016, CRIT POL ECON S ASIA, P1
[10]  
Kitamura I, 2018, 2018 28TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), P135