Bounds for Degrees of Minimal μ-bases of Parametric Surfaces

被引:0
作者
Cortadellas, Teresa [1 ]
D'Andrea, Carlos [2 ]
Eulalia Montoro, M. [2 ]
机构
[1] Univ Barcelona, Fac Educ, Barcelona, Spain
[2] Univ Barcelona, Dept Matemat & Informat, Barcelona, Spain
来源
PROCEEDINGS OF THE 45TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2020 | 2020年
基金
欧盟地平线“2020”;
关键词
mu-bases; syzygies; parametrization; Quillen-Suslin Theorem; effective bounds;
D O I
10.1145/3373207.3404039
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By adapting the effective version of Quillen-Suslin Theorem given in [8], we show that if the ideal defining a rational parametrization of degree d of an algebraic surface in 3-dimensional space is radical and has D points, then a mu-basis of this parametrization can be found of degree bounded by 5 max(1, D - 1)(4)(2d + 1)(4). This bound improves those obtained recently in [4] in our setup, and it is also sensitive to the number of base points.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 12 条
[1]  
Becker E., 1994, ISSAC'94. Proceedings of the International Symposium on Symbolic and Algebraic Computation, P129, DOI 10.1145/190347.190382
[2]   The μ-basis and implicitization of a rational parametric surface [J].
Chen, FL ;
Cox, D ;
Liu, Y .
JOURNAL OF SYMBOLIC COMPUTATION, 2005, 39 (06) :689-706
[3]  
Chen FL, 2002, GRAPH MODELS, V64, P368, DOI 10.1016/S1524-0703(02)00017-5
[4]   Bounding the degrees of a minimal μ-basis for a rational surface parametrization [J].
Cid-Ruiz, Yairon .
JOURNAL OF SYMBOLIC COMPUTATION, 2019, 95 :134-150
[5]   The moving line ideal basis of planar rational curves [J].
Cox, DA ;
Sederberg, TW ;
Chen, FL .
COMPUTER AIDED GEOMETRIC DESIGN, 1998, 15 (08) :803-827
[6]  
Deng Jiansong, ISSAC'05, P132, DOI [10.1145/1073884.1073904, DOI 10.1145/1073884.1073904]
[7]  
EISENBUD D, 2005, GRAD TEXT M, V229, P1
[8]   EFFECTIVE NULLSTELLENSATZ AND SERRE CONJECTURE (THE QUILLEN-SUSLIN THEOREM) IN COMPUTER ALGEBRA [J].
FITCHAS, N ;
GALLIGO, A .
MATHEMATISCHE NACHRICHTEN, 1990, 149 :231-253
[9]  
Grayson D. R., Macaulay2, a software system for research in algebraic geometry
[10]  
Hong Hoon, 2017, Journal of Symbolic Computation, V80