Improving Machine Learning Prediction of ADHD Using Gene Set Polygenic Risk Scores and Risk Scores From Genetically Correlated Phenotypes

被引:0
作者
Barnett, Eric J. [1 ]
Zhang-James, Yanli [1 ]
Faraone, Stephen V. [1 ,2 ]
机构
[1] SUNY Upstate Med Univ, Dept Psychiat & Behav Sci, Norton Coll Med, Syracuse, NY 13210 USA
[2] SUNY Upstate Med Univ, Dept Neurosci & Physiol, Norton Coll Med, Syracuse, NY 13210 USA
基金
美国国家卫生研究院;
关键词
ADHD; gene sets; machine learning; polygenic risk; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; GENOME-WIDE ASSOCIATION; FAMILIAL COAGGREGATION; SAMPLE-SIZE; LOCI; LIABILITY; SPECTRUM; CHILDREN;
D O I
10.1002/ajmg.b.33043
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Polygenic risk scores (PRSs), which sum the effects of SNPs throughout the genome to measure risk afforded by common genetic variants, have improved our ability to estimate disorder risk for Attention-Deficit/Hyperactivity Disorder (ADHD) but the accuracy of risk prediction is rarely investigated. In a study of 10,887 participants across nine cohorts, we performed gene set analysis of GWAS data to select gene sets associated with ADHD within a training subset. For each gene set, we generated gene set polygenic risk scores (gsPRSs), which sum the effects of SNPs for each selected gene set. We created gsPRS for ADHD and for phenotypes that are genetically correlated with ADHD. These gsPRS were added to the standard PRS as input to machine learning models predicting ADHD. On the test subset, a random forest (RF) model using PRSs from ADHD and genetically correlated phenotypes and an optimized group of 20 gsPRS had an area under the receiving operating characteristic curve (AUC) of 0.72 (95% CI: 0.70-0.74). This AUC was a statistically significant improvement over logistic regression models and RF models using only PRS from ADHD and genetically correlated phenotypes. Summing risk at the gene set level and incorporating genetic risk from disorders with high genetic correlations with ADHD improved the accuracy of predicting ADHD. Learning curves suggest that additional improvements would be expected with larger study sizes. Our study suggests that better accounting of genetic risk and the genetic context of allelic differences results in more predictive models.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Novel genetic loci underlying human intracranial volume identified through genome-wide association [J].
Adams, Hieab H. H. ;
Hibar, Derrek P. ;
Chouraki, Vincent ;
Stein, Jason L. ;
Nyquist, Paul A. ;
Renteria, Miguel E. ;
Trompet, Stella ;
Arias-Vasquez, Alejandro ;
Seshadri, Sudha ;
Desrivieres, Sylvane ;
Beecham, Ashley H. ;
Jahanshad, Neda ;
Wittfeld, Katharine ;
Van der Lee, Sven J. ;
Abramovic, Lucija ;
Alhusaini, Saud ;
Amin, Najaf ;
Andersson, Micael ;
Arfanakis, Konstantinos ;
Aribisala, Benjamin S. ;
Armstrong, Nicola J. ;
Athanasiu, Lavinia ;
Axelsson, Tomas ;
Beiser, Alexa ;
Bernard, Manon ;
Bis, Joshua C. ;
Blanken, Laura M. E. ;
Blanton, Susan H. ;
Bohlken, Marc M. ;
Boks, Marco P. ;
Bralten, Janita ;
Brickman, Adam M. ;
Carmichael, Owen ;
Chakravarty, M. Mallar ;
Chauhan, Ganesh ;
Chen, Qiang ;
Ching, Christopher R. K. ;
Cuellar-Partida, Gabriel ;
Den Braber, Anouk ;
Doan, Nhat Trung ;
Ehrlich, Stefan ;
Filippi, Irina ;
Ge, Tian ;
Giddaluru, Sudheer ;
Goldman, Aaron L. ;
Gottesman, Rebecca F. ;
Greven, Corina U. ;
Grimm, Oliver ;
Griswold, Michael E. ;
Guadalupe, Tulio .
NATURE NEUROSCIENCE, 2016, 19 (12) :1569-1582
[2]   Multi-PGS enhances polygenic prediction by combining 937 polygenic scores [J].
Albinana, Clara ;
Zhu, Zhihong ;
Schork, Andrew J. ;
Ingason, Andres ;
Aschard, Hugues ;
Brikell, Isabell ;
Bulik, Cynthia M. ;
Petersen, Liselotte V. ;
Agerbo, Esben ;
Grove, Jakob ;
Nordentoft, Merete ;
Hougaard, David M. ;
Werge, Thomas ;
Borglum, Anders D. ;
Mortensen, Preben Bo ;
McGrath, John J. ;
Neale, Benjamin M. ;
Prive, Florian ;
Vilhjalmsson, Bjarni J. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Novel risk genes for systemic lupus erythematosus predicted by random forest classification [J].
Almlof, Jonas Carlsson ;
Alexsson, Andrei ;
Imgenberg-Kreuz, Juliana ;
Sylwan, Lina ;
Backlin, Christofer ;
Leonard, Dag ;
Nordmark, Gunnel ;
Tandre, Karolina ;
Eloranta, Maija-Leena ;
Padyukov, Leonid ;
Bengtsson, Christine ;
Jonsen, Andreas ;
Dahlqvist, Solbritt Rantapaa ;
Sjowall, Christopher ;
Bengtsson, Anders A. ;
Gunnarsson, Iva ;
Svenungsson, Elisabet ;
Ronnblom, Lars ;
Sandling, Johanna K. ;
Syvanen, Ann-Christine .
SCIENTIFIC REPORTS, 2017, 7
[4]   Genomic Machine Learning Meta-regression: Insights on Associations of Study Features With Reported Model Performance [J].
Barnett, Eric J. ;
Onete, Daniel G. ;
Salekin, Asif ;
Faraone, Stephen V. .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (01) :169-177
[5]   Childhood intelligence is heritable, highly polygenic and associated with FNBP1L [J].
Benyamin, B. ;
St Pourcain, B. ;
Davis, O. S. ;
Davies, G. ;
Hansell, N. K. ;
Brion, M-J A. ;
Kirkpatrick, R. M. ;
Cents, R. A. M. ;
Franic, S. ;
Miller, M. B. ;
Haworth, C. M. A. ;
Meaburn, E. ;
Price, T. S. ;
Evans, D. M. ;
Timpson, N. ;
Kemp, J. ;
Ring, S. ;
McArdle, W. ;
Medland, S. E. ;
Yang, J. ;
Harris, S. E. ;
Liewald, D. C. ;
Scheet, P. ;
Xiao, X. ;
Hudziak, J. J. ;
de Geus, E. J. C. ;
Jaddoe, V. W. V. ;
Starr, J. M. ;
Verhulst, F. C. ;
Pennell, C. ;
Tiemeier, H. ;
Iacono, W. G. ;
Palmer, L. J. ;
Montgomery, G. W. ;
Martin, N. G. ;
Boomsma, D. I. ;
Posthuma, D. ;
McGue, M. ;
Wright, M. J. ;
Smith, G. Davey ;
Deary, I. J. ;
Plomin, R. ;
Visscher, P. M. .
MOLECULAR PSYCHIATRY, 2014, 19 (02) :253-258
[6]  
Bottou O., 2007, Advances in Neural Information Processing Systems, P161
[7]   Familial Liability to Epilepsy and Attention-Deficit/Hyperactivity Disorder: A Nationwide Cohort Study [J].
Brikell, Isabell ;
Ghirardi, Laura ;
D'Onofrio, Brian M. ;
Dunn, David W. ;
Almqvist, Catarina ;
Dalsgaard, Soren ;
Kuja-Halkola, Ralf ;
Larsson, Henrik .
BIOLOGICAL PSYCHIATRY, 2018, 83 (02) :173-180
[8]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[9]   How interactions between ADHD and schools affect educational achievement: a family-based genetically sensitive study [J].
Cheesman, Rosa ;
Eilertsen, Espen M. ;
Ayorech, Ziada ;
Borgen, Nicolai T. ;
Andreassen, Ole A. ;
Larsson, Henrik ;
Zachrisson, Henrik ;
Torvik, Fartein A. ;
Ystrom, Eivind .
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2022, 63 (10) :1174-1185
[10]   Shared familial risk factors between attention-deficit/hyperactivity disorder and overweight/obesity - a population-based familial coaggregation study in Sweden [J].
Chen, Qi ;
Kuja-Halkola, Ralf ;
Sjolander, Arvid ;
Serlachius, Eva ;
Cortese, Samuele ;
Faraone, Stephen V. ;
Almqvist, Catarina ;
Larsson, Henrik .
JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, 2017, 58 (06) :711-718