Protein Noise and Distribution in a Two-Stage Gene-Expression Model Extended by an mRNA Inactivation Loop

被引:3
作者
Celik, Candan [1 ]
Bokes, Pavol [1 ,2 ]
Singh, Abhyudai [3 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
[2] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[3] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
来源
COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, CMSB 2021 | 2021年 / 12881卷
关键词
Stochastic gene expression; Master equation; Analytical distribution; Generating function; Stochastic simulation; CONSEQUENCES; INITIATION; DYNAMICS;
D O I
10.1007/978-3-030-85633-5_13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Chemical reaction networks involving molecular species at low copy numbers lead to stochasticity in protein levels in gene expression at the single-cell level. Mathematical modelling of this stochastic phenomenon enables us to elucidate the underlying molecular mechanisms quantitatively. Here we present a two-stage stochastic gene expression model that extends the standard model by an mRNA inactivation loop. The extended model exhibits smaller protein noise than the original two-stage model. Interestingly, the fractional reduction of noise is a non-monotonous function of protein stability, and can be substantial especially if the inactivated mRNA is stable. We complement the noise study by an extensive mathematical analysis of the joint steady-state distribution of active and inactive mRNA and protein species. We determine its generating function and derive a recursive formula for the protein distribution. The results of the analytical formula are cross-validated by kinetic Monte-Carlo simulation.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 29 条
[1]   GillesPy: A Python Package for Stochastic Model Building and Simulation [J].
Abel, John H. ;
Drawert, Brian ;
Hellander, Andreas ;
Petzold, Linda R. .
IEEE Life Sciences Letters, 2016, 2 (03) :35-38
[2]  
Abramowitz Milton, 1988, Amer. J. Phys, V56, P958
[3]   Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation [J].
Bartman, Caroline R. ;
Hamagami, Nicole ;
Keller, Cheryl A. ;
Giardine, Belinda ;
Hardison, Ross C. ;
Blobel, Gerd A. ;
Raj, Arjun .
MOLECULAR CELL, 2019, 73 (03) :519-+
[4]   Transcriptional Bursting Diversifies the Behaviour of a Toggle Switch: Hybrid Simulation of Stochastic Gene Expression [J].
Bokes, Pavol ;
King, John R. ;
Wood, Andrew T. A. ;
Loose, Matthew .
BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (02) :351-371
[5]   Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression [J].
Bokes, Pavol ;
King, John R. ;
Wood, Andrew T. A. ;
Loose, Matthew .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 64 (05) :829-854
[6]   Translation initiation events on structured eukaryotic mRNAs generate gene expression noise [J].
Dacheux, Estelle ;
Malys, Naglis ;
Meng, Xiang ;
Ramachandran, Vinoy ;
Mendes, Pedro ;
McCarthy, John E. G. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (11) :6981-6992
[7]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186
[8]  
Gardiner C. W., 2009, Springer Series in Synergetics
[9]  
Johnson NL, 2005, WILEY SER PROBAB ST, P1, DOI 10.1002/0471715816
[10]   Analytic solutions for stochastic hybrid models of gene regulatory networks [J].
Kurasov, Pavel ;
Mugnolo, Delio ;
Wolf, Verena .
JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (1-2)