Evolutionary-based Hyperparameter Tuning in Machine Learning Models for Condition Monitoring in Wind Turbines - A Survey

被引:10
作者
Adedeji, Paul A. [1 ]
Olatunji, Obafemi O. [1 ]
Madushele, Nkosinathi [1 ]
Jen, Tien-Chien [1 ]
机构
[1] Univ Johannesburg, Mech Engn Sci, Johannesburg, South Africa
来源
2021 IEEE 12TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES, ICMIMT | 2021年
基金
新加坡国家研究基金会;
关键词
condition monitoring; evolutionary algorithm; hyperparameters; machine learning; wind turbine; OPTIMIZATION;
D O I
10.1109/ICMIMT52186.2021.9476200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimality of model hyperparameters is essential for intelligent condition monitoring (ICM) of wind turbines using machine learning models, hence the need for hyperparameter tuning. Evolutionary algorithms (EAs) have been used for hyperparameter tuning of machine learning models, however, little is known about the hyperparameter tuning of these EAs. This study presents a survey of hyperparameter tuning of EAs used for tuning hyperparameters of machine learning models that are used in ICM of wind turbines. Findings show that many studies tune hyperparameters for machine learning models, however, a few studies tune these hyperparameters with EAs. Among these few, a handful tune the hyperparameters of such EAs and such studies in ICM of wind turbines is very sparse. Hence the need to explore this double stage hyperparameter (DSHP) tuning in ICM of wind turbines.
引用
收藏
页码:254 / 258
页数:5
相关论文
共 41 条
[1]   Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review [J].
Adedeji, Paul A. ;
Akinlabi, Stephen A. ;
Madushele, Nkosinathi ;
Olatunji, Obafemi O. .
JOURNAL OF CLEANER PRODUCTION, 2020, 269
[2]   Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation [J].
Adedeji, Paul A. ;
Akinlabi, Stephen A. ;
Madushele, Nkosinathi ;
Olatunji, Obafemi O. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (01) :413-428
[3]  
Al Mamun A, 2019, INT CONF RENEW ENERG, P886, DOI [10.1109/icrera47325.2019.8996550, 10.1109/ICRERA47325.2019.8996550]
[4]   Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels [J].
Chang, Yuanhong ;
Chen, Jinglong ;
Qu, Cheng ;
Pan, Tongyang .
RENEWABLE ENERGY, 2020, 153 :205-213
[5]   Condition monitoring of wind turbines: Techniques and methods [J].
Garcia Marquez, Fausto Pedro ;
Mark Tobias, Andrew ;
Pinar Perez, Jesus Maria ;
Papaelias, Mayorkinos .
RENEWABLE ENERGY, 2012, 46 :169-178
[6]  
Godwin J. L., 2013, Int. J. Progn. Heal. Manag., P1
[7]  
Han JH, 2020, 2020 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2020), P701, DOI [10.1109/ICIEA49774.2020.9101973, 10.1109/iciea49774.2020.9101973]
[8]   Optimizing genetic algorithm for motif discovery [J].
Huo, Hongwei ;
Zhao, Zhenhua ;
Stojkovic, Vojislav ;
Liu, Lifang .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (11-12) :2011-2020
[9]  
Hutter F., 2014, Automated Machine learning: methods, systems, challenges, V498
[10]   Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines [J].
Islam, M. M. Manjurul ;
Kim, Jong-Myon .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 184 :55-66