On the fractional edge dimension of graphs

被引:0
作者
Zhang, Yuezhong [1 ]
Bi, Xiaohua [1 ]
机构
[1] North China Inst Aerosp Engn, Sch Liberal Arts & Sci, Langfang 065000, Peoples R China
关键词
Edge metric dimension; fractional edge dimension; edge resolving set; edge resolving function; METRIC DIMENSION; PRODUCT;
D O I
10.1142/S1793830925501009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V (G),E(G)) be a connected graph. For any vertex x is an element of V (G) and edge e = yz is an element of E(G), the distance between the vertex x and the edge e = yz is defined as d(x,e) =min{d(x,y),d(x,z)}. A vertex x is an element of V (G) is said to resolve two distinct edges e1,e2 is an element of E(G) if d(x,e(1))not equal d(x,e(2)). Let R{e(1),e(2)} be defined by R{e(1),e(2)} = {x is an element of V (G) : d(x,e(1))not equal d(x,e(2))}. A real valued function f : V (G) -> [0, 1] is an edge resolving function of G if f(R{e(1),e(2)}) >= 1 for any two distinct edges e(1),e(2) is an element of E(G), where f(R{e(1),e(2)}) = Sigma(x is an element of R{e1,e2})f(x). The fractional edge dimension of G is given by edim(f)(G) =min{f(V (G)): f is an edge resolving function of G}, where f(V (G)) = Sigma(x is an element of V) ((G))f(x). In this paper, we study the fractional edge dimension of prism D-n, antiprism An, the web graph W-n, and the triangular winged prism graph TWPn.
引用
收藏
页数:17
相关论文
共 29 条
[1]   Bounds of Fractional Metric Dimension and Applications with Grid-Related Networks [J].
Alkhaldi, Ali H. ;
Aslam, Muhammad Kamran ;
Javaid, Muhammad ;
Alanazi, Abdulaziz Mohammed .
MATHEMATICS, 2021, 9 (12)
[2]   ON FRACTIONAL METRIC DIMENSION OF GRAPHS [J].
Arumugam, S. ;
Mathew, Varughese ;
Shen, Jian .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (04)
[3]   The fractional metric dimension of graphs [J].
Arumugam, S. ;
Mathew, Varughese .
DISCRETE MATHEMATICS, 2012, 312 (09) :1584-1590
[4]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[5]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[6]  
Currie J., 2001, Journal of Combinatorial Mathematics and Combinatorial Computing, V39, P157
[7]  
Feng M, 2018, ARS COMBINATORIA, V138, P249
[8]   On the fractional metric dimension of graphs [J].
Feng, Min ;
Lv, Benjian ;
Wang, Kaishun .
DISCRETE APPLIED MATHEMATICS, 2014, 170 :55-63
[9]   ON THE METRIC DIMENSION AND FRACTIONAL METRIC DIMENSION OF THE HIERARCHICAL PRODUCT OF GRAPHS [J].
Feng, Min ;
Wang, Kaishun .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) :302-313
[10]   Edge Metric Dimension of Some Generalized Petersen Graphs [J].
Filipovic, Vladimir ;
Kartelj, Aleksandar ;
Kratica, Jozef .
RESULTS IN MATHEMATICS, 2019, 74 (04)