Distance-Dependent Interaction between a Single Emitter and a Single Dielectric Nanoparticle Using DNA Origami

被引:0
作者
Siegel, Nicole [1 ]
Sanz-Paz, Maria [1 ,2 ]
Gonzalez-Colsa, Javier [3 ]
Serrera, Guillermo [3 ]
Zhu, Fangjia [1 ]
Szalai, Alan M. [4 ]
Kolataj, Karol [1 ]
Fujii, Minoru [5 ]
Sugimoto, Hiroshi [5 ]
Albella, Pablo [3 ]
Acuna, Guillermo P. [1 ,6 ]
机构
[1] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland
[2] Sorbonne Univ, Inst Nanosci Paris, CNRS, INSP, F-75005 Paris, France
[3] Univ Cantabria, Dept Appl Phys, Grp Opt, Santander 39005, Spain
[4] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Invest Bionanociencias CIBION, Godoy Cruz 2390, Buenos Aires, Argentina
[5] Kobe Univ, Grad Sch Engn, Dept Elect & Elect Engn, Kobe 6578501, Japan
[6] Univ Fribourg, Swiss Natl Ctr Competence Res NCCR Bioinspired Mat, Chemin Verdiers 4, CH-1700 Fribourg, Switzerland
来源
SMALL STRUCTURES | 2025年
基金
瑞士国家科学基金会;
关键词
DNA nanotechnology; DNA origami; dielectric nanoparticles; low-loss materials; nanophotonics; silicon; single-molecule fluorescence; FLUORESCENCE ENHANCEMENT; ANTENNAS; NANOPHOTONICS; NANOANTENNAS; FABRICATION; EMISSION; SHAPES; GAP;
D O I
10.1002/sstr.202500299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optical nanoantennas can manipulate light-matter interactions at the nanoscale, modifying the emission properties of nearby single photon emitters. To date, most optical antennas are based on metallic nanostructures that exhibit unmatched performance in terms of electric field enhancement but suffer from substantial ohmic losses that limit their applications. To circumvent these limitations, there is a growing interest in alternative materials. In particular, high-refractive-index dielectrics have emerged as promising candidates, offering negligible ohmic losses, and supporting both electric and magnetic resonances in the visible and near-infrared range that can unlock novel effects. Currently, the few available studies on dielectric nanoantennas focus on ensemble measurements. Here, the DNA origami technique is exploited to study the interaction between silicon nanoparticles and organic fluorophores at the single-molecule level, in controlled geometries and at different spectral ranges within the visible spectrum. Their distance-dependent interaction is characterized in terms of fluorescence intensity and lifetime, revealing a significant modification of the decay rate together with minimal quenching and a high-fluorescence quantum yield even at short distances from the dielectric nanoparticle. This work demonstrates the advantages of dielectric nanoantennas over their metallic counterparts and paves the way for their applications in single-molecule spectroscopy and sensing.
引用
收藏
页数:8
相关论文
共 60 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   Distance Dependence of Single-Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami [J].
Acuna, Guillermo P. ;
Bucher, Martina ;
Stein, Ingo H. ;
Steinhauer, Christian ;
Kuzyk, Anton ;
Holzmeister, Phil ;
Schreiber, Robert ;
Moroz, Alexander ;
Stefani, Fernando D. ;
Liedl, Tim ;
Simmel, Friedrich C. ;
Tinnefeld, Philip .
ACS NANO, 2012, 6 (04) :3189-3195
[3]   Fluorophore-Decorated Mie Resonant Silicon Nanosphere for Scattering/Fluorescence Dual-Mode Imaging [J].
Adachi, Masato ;
Sugimoto, Hiroshi ;
Nishimura, Yuya ;
Morita, Kenta ;
Ogino, Chiaki ;
Fujii, Minoru .
SMALL, 2023, 19 (14)
[4]   Coupling Single Molecules to DNA-Based Optical Antennas with Position and Orientation Control [J].
Adamczyk, Aleksandra K. ;
Zhu, Fangjia ;
Schaefer, Daniel ;
Kanehira, Yuya ;
Kogikoski Jr, Sergio ;
Bald, Ilko ;
Schluecker, Sebastian ;
Kolataj, Karol ;
Stefani, Fernando D. ;
Acuna, Guillermo P. .
ACS PHOTONICS, 2024, 11 (12) :5267-5272
[5]   Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers [J].
Albella, Pablo ;
Ameen Poyli, M. ;
Schmidt, Mikolaj K. ;
Maier, Stefan A. ;
Moreno, Fernando ;
Jose Saenz, Juan ;
Aizpurua, Javier .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (26) :13573-13584
[6]   Enhanced Photoluminescence with Dielectric Nanostructures: A review [J].
Alhalaby, Hiba ;
Zaraket, Haitham ;
Principe, Maria .
RESULTS IN OPTICS, 2021, 3
[7]  
Anger Pascal, 2006, Phys Rev Lett, V96, P113002
[8]   Magnetic and Electric Hotspots with Silicon Nanodimers [J].
Bakker, Reuben M. ;
Permyakov, Dmitry ;
Yu, Ye Feng ;
Markovich, Dmitry ;
Paniagua-Dominguez, Ramon ;
Gonzaga, Leonard ;
Samusev, Anton ;
Kivshar, Yuri ;
Luk'yanchuk, Boris ;
Kuznetsov, Arseniy I. .
NANO LETTERS, 2015, 15 (03) :2137-2142
[9]   All-dielectric nanophotonics: the quest for better materials and fabrication techniques [J].
Baranov, Denis G. ;
Zuev, Dmitry A. ;
Lepeshov, Sergey I. ;
Kotov, Oleg V. ;
Krasnok, Alexander E. ;
Evlyukhin, Andrey B. ;
Chichkov, Boris N. .
OPTICA, 2017, 4 (07) :814-825
[10]   Recent advances in high refractive index dielectric nanoantennas: Basics and applications [J].
Barreda, A. I. ;
Saiz, J. M. ;
Gonzalez, F. ;
Moreno, F. ;
Albella, P. .
AIP ADVANCES, 2019, 9 (04)