Efficient epistasis inference via higher-order covariance matrix factorization

被引:0
作者
Shimagaki, Kai S. [1 ,2 ]
Barton, John P. [1 ,2 ]
机构
[1] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
Bayesian inference; selection; epistasis; linkage; diffusion; higher-order statistics; viral evolution; TIME-SERIES DATA; NATURAL-SELECTION; BENEFICIAL MUTATIONS; CELL RESPONSES; ALLELE AGE; FITNESS; ADAPTATION; EVOLUTION; CONTACTS; ESCAPE;
D O I
10.1093/genetics/iyaf118
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Epistasis can profoundly influence evolutionary dynamics. Temporal genetic data, consisting of sequences sampled repeatedly from a population over time, provides a unique resource to understand how epistasis shapes evolution. However, detecting epistatic interactions from sequence data is technically challenging. Existing methods for identifying epistasis are computationally demanding, limiting their applicability to real-world data. Here, we present a novel computational method for inferring epistasis that substantially reduces computational costs without sacrificing accuracy. We validated our approach in simulations and applied it to study HIV-1 evolution over multiple years in a data set of 16 individuals. There we observed a strong excess of negative epistatic interactions between beneficial mutations, especially mutations involved in immune escape. Our method is general and could be used to characterize epistasis in other large data sets.
引用
收藏
页数:12
相关论文
共 89 条
[1]   Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution [J].
Allen, TM ;
Altfeld, M ;
Geer, SC ;
Kalife, ET ;
Moore, C ;
O'Sullivan, KM ;
DeSouza, I ;
Feeney, ME ;
Eldridge, RL ;
Maier, EL ;
Kaufmann, DE ;
Lahaie, MP ;
Reyor, L ;
Tanzi, G ;
Johnston, MN ;
Brander, C ;
Draenert, R ;
Rockstroh, JK ;
Jessen, H ;
Rosenberg, ES ;
Mallal, SA ;
Walker, BD .
JOURNAL OF VIROLOGY, 2005, 79 (21) :13239-13249
[2]  
[Anonymous], 2004, Mathematical Population Genetics
[3]   Epistasis and Adaptation on Fitness Landscapes [J].
Bank, Claudia .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2022, 53 :457-479
[4]   Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable [J].
Barton, John P. ;
Goonetilleke, Nilu ;
Butler, Thomas C. ;
Walker, Bruce D. ;
McMichael, Andrew J. ;
Chakraborty, Arup K. .
NATURE COMMUNICATIONS, 2016, 7
[5]   Epistasis and entrenchment of drug resistance in HIV-1 subtype B [J].
Biswas, Avik ;
Haldane, Allan ;
Arnold, Eddy ;
Levy, Ronald M. .
ELIFE, 2019, 8
[6]   Estimation of 2Nes from temporal allele frequency data [J].
Bollback, Jonathan P. ;
York, Thomas L. ;
Nielsen, Rasmus .
GENETICS, 2008, 179 (01) :497-502
[7]   Escape and compensation from early HLA-B57-Mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A [J].
Brockman, Mark A. ;
Schneidewind, Arne ;
Lahaie, Matthew ;
Schmidt, Aaron ;
Miura, Toshiyuki ;
DeSouza, Ivna ;
Ryvkin, Faina ;
Derdeyn, Cynthia A. ;
Allen, Susan ;
Hunter, Eric ;
Mulenga, Joseph ;
Goepfert, Paul A. ;
Walker, Bruce D. ;
Allen, Todd M. .
JOURNAL OF VIROLOGY, 2007, 81 (22) :12608-12618
[8]   The Linked Selection Signature of Rapid Adaptation in Temporal Genomic Data [J].
Buffalo, Vince ;
Coop, Graham .
GENETICS, 2019, 213 (03) :1007-1045
[9]   Estimating the genome-wide contribution of selection to temporal allele frequency change [J].
Buffalo, Vince ;
Coop, Graham .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (34) :20672-20680
[10]   Epistasis and its relationship to canalization in the RNA virus φ6 [J].
Burch, CL ;
Chao, L .
GENETICS, 2004, 167 (02) :559-567